Evaluation of Multifunctional Land Use: Design and application of policy criteria

Research Memorandum 2002-28
Evaluation of Multifunctional Land Use: Design and application of policy criteria

Research Memorandum 2002-28

Caroline Rodenburg
Peter Nijkamp
Evaluation of Multifunctional Land Use Design and Application of Policy Criteria

Caroline Rodenburg
Peter Nijkamp

Free University Amsterdam
Department of Spatial Economics
De Boelelaan 1105
1081 HV Amsterdam
The Netherlands
email: crodenburg@feweb.vu.nl

Abstract
Multifunctional land use has recently received increasing attention, both as a planning concept and as a tool for integrated modelling. When multifunctional spatial planning design is used, socio-economic synergy benefits may be obtained, if several (complementary or mutually strengthening) functions are exercised at the same place and time. The present paper aims to offer a new contribution to the economics of multifunctional land use by analysing the concept in greater detail from an operational and integrative perspective. A functional typology of specific land use functions is presented, along with the development of assessment criteria to measure the degree of multifunctionality of specific land use projects. A Dutch case study of a multifunctional land use project, the so-called Amsterdam South-Axis, is presented and analysed as an illustrative case.

PN059CR
1. Introduction

The economic science has traditionally put great interest in land use. This interest stems from three characteristics of land; i) land is scarce, ii) land has alternative use options, and iii) land has a social value in the economy. Economists have typically focused on questions of efficiency and (more recently) sustainability of land use. These studies are generally concerned with ‘monofunctional’ land use patterns. Since recently, however, also the concept of multifunctional land use has gained interest. Multifunctional land use attempts to combine several socio-economic functions in the same area, so as to conserve scarce space and to exploit economies of synergy. The aforementioned characteristics of land use can also be studied to study the concept of multifunctional land use from a socio-economic perspective. The present paper aims to analyse the concept of multifunctional land use in greater detail by focussing on specific land use functions and by analysing the opportunities for benefiting from multifunctionality in designated land use projects. Therefore, in Section 2 a set of different land use functions is defined, along with the relationships between them. Since this paper focuses mainly on urban areas, not all land use functions will be taken into account. This paper concentrates mainly on multifunctional land use projects that include, at the very least, an infrastructure function. Definitions of the major important concepts dealt with in this paper (land use, infrastructure, and multifunctionality) are presented in Section 3. Before the relationship between these concepts is analysed, the factors that determine urban land use are examined (Section 4). These are investigated from a multifunctional point of view as well. Section 5 then provides a theoretical overview of the relationship between land use, infrastructure, and the multifunctional organisation of space, as it relates to possibilities for the emergence of synergy effects. These analytical contributions form the basis for the indicators framework presented in Section 6. Through which multifunctional land use projects may be quantitatively analysed in terms of the degree of multifunctionality. Section 7 is an initial attempt to explore a multifunctional land use project (the so-called South-Axis (Zuid-as) in Amsterdam). Section 8 offers some concluding remarks.

2. Identification of land use functions

An empirical analysis of multifunctional land use of course requires unambiguous definitions of its elements; i.e., of the different land use functions to be distinguished. Our study will distinguish nine such (rather aggregate) functions (Rodenburg, 2001), namely:

- **Residential housing** is defined as the space that is used by (permanent) living.
- **Work and business** refers to the space that is used for commerce and industry. This includes, for example, office locations and industry locations.
- **Amenities** includes non-profit organisations (hospitals, schools, museums, churches, etc.) as well as shopping facilities.
- **Infrastructure** refers to the space (including safety buffers) that is used to facilitate movement of goods and persons. This includes the transport infrastructure (roads, railways, waterways, terminals, ports, and airports), the communication infrastructure (data-communication networks), energy facilities (electricity networks), and the water infrastructure (dikes, bridges, locks, sea walls, etc.).
- **Recreation and culture** has a broad definition. Benches along public roads are not included. Areas included are day trip destinations, campgrounds and amusement parks. Space consumed by cultural functions is also included.
- **Water refuges** is the space that is taken up by rivers, watercourses, lakes and territorial waters that have a water management function. This also includes areas that have a drinking water function, e.g., storage of drinking water, and recreation areas.
- **Agriculture** refers to the space that is used for cropland, pasture, orchards, vineyards, and horticulture. This also includes the space needed for intensive, non-landscaped cable laying.
- **Nature and landscape** means, in its broad definition, the space needed to maintain or guarantee the current quality of nature (biodiversity). In its narrower definition, it may refer to the Main Ecological Structure, a policy concept used in the Netherlands to indicate a spatially connected network of larger units of nature (including water). The broad definition will be used here.
- **Remaining** includes the use of land that cannot be classified under one of the land use functions as described above.
These individual spatial functions are defined to be mutually exclusive. This means that the sum of the total land area cannot be exceeded by the sum of the land area consumed by the different functions. The initial starting point is therefore a monofunctional land use situation in which each type of land use has its own characteristics of demand and supply.

Figure 1 shows the relations between the various functions (except for the function ‘remaining land’) and the external forces that affect the system of land use and vice versa. Examples of external forces are the actual spatial organisation, as well as demographic and geographic influences. The highlighted part shows the focus of this paper: the transport function and the land use functions most directly related to it in a multifunctional context. Remaining land is not included in this figure since there are no direct relations to be indicated between remaining land and other functions. This will be dependent on the activities exercised on the remaining land.

A few remarks should be made. First, time is an important aspect of this figure for two reasons. 1) The arrows all point in two directions, but this does not necessarily mean that both influences take place at the same time. For example, the influence of residential housing on amenities is direct, since people want shops, schools, etc., close to their homes, but the development of a big shopping centre does not necessarily mean that houses will soon be established near it. 2) Also, more generally, different arrows may refer to different time spans. For example, infrastructure has an influence on all other functions, but not necessarily at the same moment. Second, it is very well possible that certain relationships are more likely to occur than others are.

Urban spatial structure consists of the layout of the physical components of an urban area and their interrelationships. These are continually evolving, so that spatial structure is a dynamic phenomenon, changing over time and in space (Dowall, 1979). In determining urban structures and location behaviour, the land use system and the transportation system (regarded here as the system of transport infrastructure) are highly interdependent. Briefly stated, location decisions made as a result of land use activities are to a large extent, the result of the relative cost of travel to various opportunities. Given the structure (layout, capacity, geographical position, etc.) of the transportation system, the pattern of trips generated by these activities affects the costs of travel in the region. It can be said, therefore, that the spatial organisation of land use determines and, at the same time, is determined by, the design and characteristics of the transportation system. It is interesting to analyse this dual relation in greater detail, especially in light of multifunctional land use.

Figure 1 Land use functions
The concept of multifunctional land use is defined by the use of the same area for several functions. The combination of different land use functions at one location means that the land use intensity increases. In many countries the intensity of land use has increased in the last decades and will probably increase further, it is difficult to develop a clear definition of multifunctional land use. The concept of multifunctional land use is very broad. It can range from a combination of two economic functions to the combination of all economic functions shown in Figure 1, depending on the chosen scale. In this paper the project level has been chosen as the scale level. The boundaries of the project define the area that will be analysed. When seen from a project perspective it is very hard to indicate whether the projects are multifunctional or not. They can only be considered more multifunctional or less multifunctional. Therefore, a more suitable definition of multifunctional land use in a dynamic context would be:

A land use pattern is said to become more multifunctional when the average number of functions and/or units of land increases in the area considered. An increased degree of multifunctionality may therefore result from the addition of functions to the area (multifunctionality in diversity) or from a decrease in the average size of monofunctional areas (multifunctionality by interweaving).

Increased multifunctionality may be the result of market forces, government policies, or both. From an economic perspective market forces can be subdivided into demand factors (such as increased preference for diversity of products and services and marketing externalities) and supply factors (such as agglomeration externalities).

It is important to identify specific focal points in order to design an operational definition of multifunctional land use in actual situations (case studies). Nijkamp et al. (2000a) have carried out an electronic interactive consultation about the definition of multifunctional land use. The consultation made clear that...
The third specific concept that will be focussed on in the context of this paper is infrastructure. Infrastructure is a very broad concept that will not be dealt with in full detail in this paper. A general description will be given first after which we will focus on certain areas. To define the concept of infrastructure turns out to be more problematic than one might initially think. Definitions often consist of partial descriptions or enumerations of elements summarised by the author under the heading of "Infrastructuur." One of the efforts to come is an integral definition of infrastructure can be found in Nijkamp et al. (2000a) where infrastructure is defined as follows (translated from Dutch): "Infrastructure contains those immovable services that increase the efficiency of the use of production factors and that fulfill the following conditions: infrastructure is directly productive, is characterised by a stock character (capital good) and has the character of a (semi) public good." Nijkamp et al. define three categories of infrastructure: physical network infrastructure, immaterial knowledge infrastructure and natural and environmental infrastructure. The physical network infrastructure fulfills the following condition: it has, to a large extent, a network character, is largely non-substitutable, and is, to a large extent, location-bound and polyvalent. It is related to transport, public utilities, water management, and industry locations. Since the other two categories fall outside the scope of this paper, they will not be discussed here. This paper addresses transport infrastructure. In the spatial interaction between different economic activities, transport plays an important role. Transport infrastructure facilitates the movement of people and goods, as well as the provision and distribution of services. Transport infrastructure therefore fulfills one of the most important spatial functions: transport is one of the most pervasive activities in any society or economy (Hay and Knowles, 1990). The definition of transport infrastructure that will be used in this paper is as follows: all infrastructure present in the case study area that serves the physical movement of people and/or goods. Transport infrastructure typically is not supplied through the market mechanism. It then may become unclear whether demand for and supply of infrastructure are harmonised. If it is assumed that infrastructure development follows demand, then it can be set that infrastructure has to fulfill. In this case, infrastructure follows economic and demographic developments, complementing them. Conversely, infrastructure can also steer economic development. Investment in infrastructure can lead to an increase in productivity and to the creation and relocation of employment and other activities.

4. Factors determining land use decisions

The most important concepts in this paper were defined in the previous section; now it is important to analyse why and how the concept of multifunctional land use originated. To understand land use decisions, we must consider the factors determining profitability and utility. Five main factors can be identified (based on Harvey, 2000): accessibility, agglomeration economies, historical development, topographical features and technological development. Accessibility can be defined as "the money, time and trouble costs of getting anywhere" (Harvey, 1989). Accessibility increases if these costs decrease. Firms require accessibility to factors of production (especially labour) and to markets. Households, on the other hand, require accessibility to work opportunities, shops, schools and recreational facilities. Accessibility is largely dependent upon transport facilities; transport costs are therefore an important determinant of the locations of firms and households. Other determinants are the money, time and trouble costs of travel as well as communication costs. These can result from the fact that spatial interaction—in a general sense—involves the movement of people, goods, production factors or services, or the transfer of data and information.
...Agglomeration economies, in the broadest sense, may also influence location decisions. This means, for example, that by locating closer together, firms can produce at a lower cost. In agglomeration economies, activities compete for scarce space. There are various types of agglomeration economies, such as localization economies, urbanization economies and shopping externalities (e.g. O’Sullivan, 2000). To create localization economies, firms locate themselves close to other firms in the same industry, clustering in order to decrease their production costs. Urbanization economies occur if the production cost of an individual firm decreases as the total output of the urban area increases. Shopping externalities arise if shops selling comparable goods profit from their mutualproximity by offering consumers greater choice and improving the location’s reputation as a source for a particular good.

Historical development: current and future development is often dependent on past development and on the current functions of an area. At some geographical locations, land use patterns may be heavily influenced by location decisions made by the Romans or by nineteenth-century industrialists; other land use patterns are clearly the product of twentieth-century planning. This path dependency means that present spatial organization is a logical starting point for an analysis of the future land use of certain areas.

Topographical features, geographical heterogeneity is an important factor in the location decisions for certain activities. An activity’s ultimate location is often dependent on physical features such as rivers, mountains, plains, slopes, wind, climate and geology.

Technological developments, together with increases in real income, are important factors that determine land use decisions. The widespread ownership of cars and lorries, together with new retailing techniques, largely accounts for the setting-up of out-of-town hypermarkets, retail warehouses and shopping centres. The development of road transport has also resulted in the construction of residences on the land between the major transport routes of urban areas and in the movement of households towards the peripheries. For offices, the effects of technological development are mixed. New building techniques have reduced the cost of space building, leading to more intensive development of the CBD. Improved industrial technology, in contrast, enables the majority of office procedures to be carried out at sub-centres.

The aforementioned factors influencing ultimate land use decisions can also be used to explain the increasing attempts now being made to multifunctional land use. If different land use functions are combined, accessibility becomes even more important. In every urban area there are locations where the transport routes and systems converge. These locations are the positions with the greatest accessibility for the population of the urban area (Leach, 1969) and are therefore very suitable for multifunctional land use. At these locations, transport costs are lower (shorter distances) and also multipurpose travel, enabling firms and households to save time and money on transport. Concerning the agglomeration economies, their number could increase with an increase in multifunctional land use. Urbanization economies and shopping externalities are particularly likely to result from multifunctional land use. Obviously, industrial development and topographical features do not change as a result of the combination of functions in space.

The final factor, technological development, is an important reason for the development of the concept of multifunctional land use. Not only improvements in construction techniques, but also developments in ICT possibilities have opened new insights into opportunities for combining economic activities.

Another important issue must be taken into account concerning location decisions and multifunctional land use. The scarcity of land is an important reason for the development of multifunctional land use. People do not want only to live in densely populated areas, but also want to be able to work, shop, move around, etc. in order to maximise their utility. In some of these activities have to be carried out in a limited space; land use functions will have to be combined (e.g., by using the third and/or fourth dimension). This type of development corresponds with one of the main characteristics of the urban economy: interdependence of land uses, which is largely created by external economies and diseconomies of production and consumption. These interdependencies bring about entirely different uses and values in areas with the same level of general accessibility. The theories on the concentric ring pattern of the spatial distribution of land use and the smooth pattern of the real gradient may, therefore, have to be modified. The spatial distribution of land use patterns can be expected to be far more...
patchy as complementary land use patterns are gathered together in specific parts of the city, where they can more easily enjoy the benefits of their proximity. The rent gradient will consequently show "bumps", temporary sections in land values reflecting areas of land use where neighbourhood economies are very favourable (Newell, 1977).

5. Relation between land use, infrastructure and the multifunctional organisation of space

Different relationships between land use and transport infrastructure can be identified. The pattern of influence is mutual: land use influences transport infrastructure, since general spatial and land use patterns have an impact on transport volumes; and transport infrastructure influences land use, since transport infrastructure has certain spatial/land use requirements. This relation is dynamic and ongoing, as is illustrated in Figure 2. The figure shows that basic forces, such as demography, historical developments, geographical location, soil conditions and economic development, form the basis for decisions about land use. Once the land use pattern has been determined, transport infrastructure must be developed to enable the transport of persons and goods to the area. Transport infrastructure can also provide access to new areas, thereby enabling land use patterns to change (t+1). Once established, however, land use patterns largely determine demand for transport.

![Diagram 1: Dynamic relations in the land use-transport system](image)

As early as in the classical economic theories on land use, a relation between transport and land use was identified. The role of transport infrastructure is, directly or indirectly, present in traditional economic growth theories. An example is the location theory, which shows that changes in infrastructure networks lead to changes in the spatial organisation of activities (Brown, 1984). Transport infrastructure influences spatial organisation in various ways, but its major influence on regional economies is that it enables specialisation. A simplified example can serve as an illustration (Taffe and Gauthier, 1973). If there is little or no transportation as a result of a lack of infrastructure, cities are isolated from each other (Figure 3a). Each individual city (X and Y) produces a range of products dependent upon its own consumption needs. X might, for example, have the best conditions to grow product 1, but the amount of land used to produce product 1 will depend upon the amount of product 1 consumed by the inhabitants of city X. The same might hold true for city Y for product 2. If transport opportunities arise when a road is constructed between X and Y (Figure 3b), the first signs of specialisation will appear; X will expand its production of product 1, whereas Y will expand its production of product 2. Each city will transport its surpluses to the other. For city Y, the costs of transporting product 1 into its area are lower than the costs of producing product 1 itself.

![Diagram 2: Isolated cities without infrastructure](image)

![Diagram 3: Specialised cities with infrastructure](image)

This example shows the importance of transport infrastructure to regions. The same logic can also be applied to the determination of land use functions. Different land use functions cannot exist in an isolated state in the way that cities cannot. Different functions always need transport infrastructure between them, since, for example, a residential housing function cannot be economically self-sufficient without a place to grow crops and the opportunity for its inhabitants to buy food. If different land use functions are
Transport costs form an important element of the relation between land use and infrastructure. A substantial part of the interaction among urban activities takes place via the urban transportation system. This system can also create changes through the imposition of its costs on its users and on the community at large. A distinction must be made between public and private costs. Public costs consist of the expenditure of funds by public bodies for the construction, operation and maintenance of transportation facilities, whereas private costs are mainly out-of-pocket money and time costs to individuals. Public costs result from and affect community decisions about how the transport system should perform as a whole. Private costs, on the other hand, result from and affect the trip-making and locating behaviour of persons. Together, these costs have a huge impact on the spatial organisation of an urban region, since public investment in infrastructure tends to reduce the private time or money costs of movement. If these costs are reduced, the costs of economic linkages of the movement of goods and persons will also be reduced (Wingo, 1963).

The effect of infrastructure on spatial patterns of economic activities is especially important in areas with high land use intensity, where there is multifunctional land use. The spatial needs of transport infrastructure might conflict with, for example, habitats, archaeological sites, cultural and historical sites, agricultural areas, recreational areas or settlements. Transport infrastructure consumes land directly (e.g. roads, rail stations) as well as indirectly (mainly by causing spatial development). The extent of the space needed depends on the mode of transport and on the speed of travel (ELTIS, 2002).

Integrating the planning of transport, infrastructure, and urban and regional policies can help to reduce the need for travel and can decrease emissions, land use, and resource consumption. For sustainable development, strategic, integrative planning, which involves impact assessment (i.e. the application of strategic environmental assessment), helps to create land use patterns that place activities close to each other, thereby reducing the need for travel between them. Planning should emphasise accessibility rather than mobility, i.e. the aim of planning should be to enable everyday activities to be carried out with little travel. A pattern of smaller urban areas is probably not suitable for attaining this goal, since they generate more traffic than compact centralised cities. On average, throughout the EU, travel demand is if population densities are greater than 50 inhabitants/hectare (European Environment Agency, 1995). Multifunctional land use could be used as an instrument to decrease demand for travel, when it increases population density. One could say that the current congestion of major roads is a negative development that encourages multifunctional land use and multifunctional time use, whereas technological factors (including ICT) are a positive development that encourages multifunctional land use and multifunctional time use (Priebsch et al., 2000). Changes in the time and space budgets of individuals and households play an important role in this process.

6. Framework for analysis

The observations so far form the basis of a framework for the analysis of multifunctional land use projects. The analysis attempts to identify criteria that measure the degree of multifunctionality of a certain land use project. There are various publications about all kinds of criteria and indicators to measure, for example, specialisation, diversity, and intensification (see, e.g., Harts et al. (1999), Piepers (2001), McCann (2001), and Fouchier (1996)). However, the criteria used in this paper do not have to be assigned only to the different land use functions, but have to be also adjusted for the scope of a specific multifunctional project. The adjustment of criteria will mainly be dependent on the specific land use functions involved in the multifunctional project concerned.

Operational indicators to measure the degree of multifunctionality of a certain land use project have to be related to the elements of the definition of multifunctional land use as presented in Section 3. As a starting point, it is important to define what we want to measure, or, in other words, from which viewpoint we want to reason. A logical starting point is the creation of a distinction between input and output (performance)
of land use. Since this paper deals mainly with the supply side of land use, our starting point will be the input side.

A first multifunctional indicator that complies with the definition of multifunctional land use is diversity, representing the different land use functions that can simultaneously be found in the project area of hand. These can simply be counted as frequencies according to the definitions of land use functions as presented in Section 2:

\[
\text{Diversity} = \frac{\text{Actual number of functions}}{\text{Maximum number of feasible functions}}
\]

The actual number of functions in our case cannot exceed 9; the theoretically maximum number of feasible functions. This means that the maximum value of diversity is always 1. This indicator is very tentative, but could be made more precise by identifying and assessing subfunctions.

An indicator that is closely related to diversity is dispersion. This indicator is based on the Herfindahl-Hirschman index (HHI) (Jones-H孤单on, 1997, and Lijesen et al. 2002) and dependent on the actual number of functions as used for the diversity indicator. Dispersion measures the degree to which each function is present in equal proportions within the project area (in m² land use), as represented by the following formula:

\[
\text{Dispersion} = \frac{1}{I^2} \sum_{i=1}^{I} (M_i/S)^2
\]

in which:
- \(M_i\) = the amount of m² land used by a single function i (input)
- \(S\) = the total amount of m² land use of the project area
- \(I\) = the actual number of functions (were \(I\) has a maximum of 9 (according to the definition of land use functions in Section 2)).

This indicator has a maximum value of \(1/9\), indicating that there is maximum dispersion within the project area, or, in other words, the proportion of each individual function is equal to that of the other functions. The minimum value of this indicator varies with the number of functions that are present within the project area. According to our maximum of 9 land use functions as defined in this paper, the minimum dispersion value will be \(1/9\). This indicator will, ideally, be measured in m² land use, since this shows the proportion of territories of land used within the project area by the different functions, and with that, the spatial dispersion of the functions in a flat surface.

The second element in the definition of multifunctional land use is interweaving, which is defined as 'the degree to which different functions touch upon other functions'. This case of interrelatedness can be represented by the following formula:

\[
\text{Interweaving} = \frac{1}{I^2} \sum_{i=1}^{I} (B_i/S)^2
\]

in which:
- \(B_i\) = the length of physical boundaries with other functions within the project area
- \(S\) = the total amount of m² land use of the project area
- \(I\) = the actual number of functions (where \(I\) has a maximum of 9 (according to the definition of land use functions in Section 2)).
This indicator does not reckon with the third (vertical) dimension yet and can therefore only be measured in a flat surface. To solve this shortcoming, the surface of boundaries between land use functions could be measured for B_i and C, which can be expressed in m^2. However, these are just tentative ideas that have not been crystallised yet, but this will be done in future studies.

Another relevant feature is concerned with intensity of functions. Although intensification as a process in itself is difficult to observe in a static sense, it is useful and illustrative to show the land use intensity for different land use alternatives. Therefore, it can be used here as one of the indicators representing the degree of multifunctionality of a specific land use project. Only in the case of a comparison between different alternatives may we draw conclusions about the degree of multifunctional land use (possibly related to the third dimension). Intensification should, in first instance, be measured for each single land use function ($i = 1, \ldots, l$), which can be represented by the following formula:

\[
\text{Intensification} = \frac{Q_i}{M_i}
\]

where:
- $Q_i = \text{the amount of non-land input of a certain land use function (houses, employment, etc)}$
- $M_i = \text{the amount of } m^2 \text{ land used by a single function } i (\text{input})$
- $l = \text{the actual number of functions (where } l \text{ has a maximum of } 9 \text{ (according to the definition of land use functions in Section 2))}$

Intensification may also be measured for the project area as a whole:

\[
\text{Intensification} = \frac{\sum Q_i}{S}
\]

where:
- $Q_i = \text{the amount of non-land input of the project area}$
- $S = \text{the total amount of } m^2 \text{ land use of the project area}$
- $l = \text{the actual number of functions (where } l \text{ has a maximum of } 9 \text{ (according to the definition of land use functions in Section 2))}$

For future studies, it will be interesting and necessary to analyse the ceteris paribus influence of the aggregation level of the land use functions on the indicators.

In the next section, an example of multifunctional land use project will be analysed in terms of 'degree of multifunctionality'. The aforementioned criteria will be applied to the different alternatives for developing the so-called South-Axis (Zuid-As) in Amsterdam.

7. The Amsterdam South-Axis

The Amsterdam South-Axis (Zuid-As) is in general regarded as a location with a high development potential for offices, houses and amenities. It is intended to become a location with an adequate mix of functions, which should not have a negative effect on the functioning of the city centre of Amsterdam. The development of the South-Axis is intended to create a new urban environment with its own identity. There are a number of goals for the development of the South-Axis, in particular, to eliminate the barrier effect.
of the ring road around Amsterdam, to prevent monofunctionality, and to create a solid and consistent public space. With the South-Axis project, this part of the city is intended to undergo enormous improvements in quality. Currently, there is already a certain mix of functions available at the South-Axis. There are housing areas of high quality at both sides of the ring road, as well as an international exhibition centre and conference facilities (RAI), the World Trade Centre, a university (Free University) and an academic hospital, the Court of Justice and various office buildings. The Masterplan South-Axis aims at strengthening this mix of functions in order to increase the status of the location as an office location.

In the planning process thus far three alternatives for the development of the South-Axis are distinguished: the Dock alternative, the Dike alternative, and the Combination alternative. These alternatives will be compared with a reference situation, assuming an autonomous development of the area (DRO, 1998).

The Dock alternative puts all infrastructure underground over a length of 1.2 kilometre, providing a huge extra amount of available building space. In the Dike alternative, all traffic will be guided on an elevated dike infrastructure. The latter will be situated at the current level on a broadened dike body of 170 m wide. This alternative has a compact terminal for public transport with short transfer distances, the external architecture of the dike is of a qualitatively sophisticated level, and there is an extra underpass for slow traffic. The Combination alternative combines different aspects of the Dock and the Dike alternative. The essence of this alternative is that only parts of the infrastructure will be brought underground; road traffic will be positioned underground, whereas the rail infrastructure will stay at its current level. In this alternative, the dike will become narrower, allowing for construction of offices and houses on both sides of the dike on top of the rail infrastructure (that has been constructed underground).

Table 1 shows the number of m² floor space occupied by certain functions as well as the number of planned jobs and houses within the project area.

<table>
<thead>
<tr>
<th></th>
<th>Autonomous</th>
<th>Dock</th>
<th>Dike</th>
<th>Combi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total built-up area</td>
<td>963300</td>
<td>236200</td>
<td>146700</td>
<td>204800</td>
</tr>
<tr>
<td>Offices</td>
<td>481700 (48%)</td>
<td>984500 (42%)</td>
<td>796200 (54%)</td>
<td>1065900 (53%)</td>
</tr>
<tr>
<td>Residential housing</td>
<td>304700 (35%)</td>
<td>105600 (45%)</td>
<td>456800 (33%)</td>
<td>737200 (36%)</td>
</tr>
<tr>
<td>Amenities</td>
<td>165700 (17%)</td>
<td>321700 (13%)</td>
<td>296800 (14%)</td>
<td>223700 (11%)</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>1374091</td>
<td>1423031</td>
<td>1374091</td>
<td>1397454</td>
</tr>
<tr>
<td>Green</td>
<td>306153</td>
<td>310292</td>
<td>309153</td>
<td>335190</td>
</tr>
<tr>
<td>Water</td>
<td>80000</td>
<td>100000</td>
<td>120000</td>
<td>90000</td>
</tr>
<tr>
<td>Remaining</td>
<td>627626</td>
<td>562926</td>
<td>787626</td>
<td>723921</td>
</tr>
</tbody>
</table>

Planned jobs: 24800, 35100, 40500, 53100
Planned houses: 2880, 8450, 3700, 9720

With the data in this table we can try to calculate the indicators as developed in Section 8 (see Table 2). The first indicator is diversity. The value of this indicator is the same for all four alternatives; namely, there are seven land use functions (offices, residential housing, amenities, infrastructure, water, nature and landscape, and remaining) out of seven possible feasible functions (according to the definitions used in Section 2). Therefore, the proportion of land use function at the Amsterdam South-Axis.

The second indicator is dispersion. The only alternative for which all necessary data are readily available is the Dock alternative. For the other alternatives, the data for the Dock alternative have been adapted to the characteristics of the alternative concerned. This means that with the help of a land use map for the Dock alternative, the proportions of land that will be lost by applying the Combi alternative, Dike alternative or Autonomous development (in which only a part of the layer on top of the infrastructure will be realised (Combi alternative) or no extra layer at all (Dike alternative and Autonomous development)) are attributed to the respective land use functions. Furthermore, as a result of a lack of data, the dispersion has been calculated by means of the amount of m² floor space instead of...
land use, for the individual land use functions as well as the total project area. The result shows that the Dock alternative has the highest value for dispersion. A value of one would mean that all functions occupy the same share of the project area. Therefore, its value of 0.71 means that all alternatives, the land use by the different land use functions in the Dock alternative, is most evenly spread.

Also, the calculation of interweaving creates some difficulties. There are no data available on the length of physical boundaries with other functions within the project area for any of the four alternatives. This means that this indicator can only be judged qualitatively. However, since there is no information on the distribution of the functions over the project area (to which extent will the functions be realised in a flat surface or will the third dimension be used), nothing can be said about the qualitative value of this indicator either.

The final indicator of intensification cannot be calculated for each single land use function, since there are no detailed data on land use per function. However, the second indicator for intensification as presented in Section 6 can be calculated, but only for work and business, residential housing, and amenities. It shows some differences between the alternatives as a result of differences in the number of planned jobs and houses in the project area. Since the distribution of m² floor space for houses, offices and amenities differs per alternative as well, the values for intensification for offices, houses, and amenities can best be considered in combination.

Another calculation that could be made with the available data and that is illustrative for intensification is the amount of m² floor space created for work and business, residential housing, and amenities divided by the amount of m² floor space of the total project area, and by the land used for these functions (variants on floor space index (FSI)). These values show which alternative creates the biggest amount of m² floor space within the project area, and which alternative uses the area for offices, housing and amenities most intensively. It is not surprising that the Dock alternative has the highest value on the first indicator, since it has more space available to build offices, houses and amenities, due to bringing the infrastructure underground. However, for the second indicator, the highest value can be found in the Comb alternative. This shows that in this alternative, the buildings will have to be higher in order to create the planned floor space within the planned area. This alternative uses the land for offices, houses and amenities most intensively, which is also reflected in the value for intensification on offices (Q/S).

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Indicator values for the four alternatives for the Amsterdam South Asia (Zuid-Ant)]</th>
<th>Autonomous Dock</th>
<th>Dice</th>
<th>Comb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dispersion</td>
<td>0.60</td>
<td>0.71</td>
<td>0.67</td>
<td>0.69</td>
</tr>
<tr>
<td>Inteirweaving</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Intensification</td>
<td>0.001</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>1) Q/S</td>
<td>0.009</td>
<td>0.013</td>
<td>0.015</td>
<td>0.019</td>
</tr>
<tr>
<td>2) Floor space created /total project area</td>
<td>0.35</td>
<td>0.65</td>
<td>0.53</td>
<td>0.72</td>
</tr>
<tr>
<td>3) Floor space created /total project land use</td>
<td>4.97</td>
<td>7.20</td>
<td>7.37</td>
<td>4.42</td>
</tr>
</tbody>
</table>

We have distinguished in an illustrative case study four development alternatives, each characterised by distinct numerical indicators which may be seen as quantitative approximations of attributes of these plan alternatives. This is a clear case of a multi-criteria evaluation problem, which aims to identify the most promising choice possibilities. The four alternatives have been evaluated by means of the so-called Regime analysis, which is a discrete multicriteria method (Heijting et al., 1965; Nijkamp et al., 1990).

This method is based upon two kinds of input data: an impact matrix and a set of political weights. The impact matrix shows the effect of each alternative on the indicators considered. The set of weights provides information about the relative importance of the indicators considered. In this analysis no policy weights have been given to the indicators, so we used a uniform weight factor. On the basis of these
inputs, the Regime method provides the US with a ranking of the alternatives in terms of multifunctionality (see Table 3).

Table 3: Performance scores of alternatives based on Regime analysis

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous</td>
<td>0.00</td>
</tr>
<tr>
<td>Dock</td>
<td>0.62</td>
</tr>
<tr>
<td>Dike</td>
<td>0.58</td>
</tr>
<tr>
<td>Combi</td>
<td>0.83</td>
</tr>
</tbody>
</table>

This table shows that the Combi alternative has the highest score on multifunctionality, although the difference with the Dock alternative is negligibly low. The Dike alternative has a much lower score, whereas the Autonomous development shows the lowest score. A sensitivity analysis attributing different weights to different indicators gives no really different results. Depending on the indicator that will be attributed the highest score, the Combi alternative or the Dock alternative has the highest score. The Autonomous development always has a score of 0, whereas the Dike alternative always has an intermediate score.

Table 3 shows furthermore that given the current available database the Combi and the Dock alternative are obvious examples of alternatives with a high multifunctionality value. The two others are inferior and do not offer a clear contribution to multifunctionality. It should be added that multifunctionality in itself is not a policy goal. It serves merely to realise other objectives, such as a better management of scarce space. In our particular case, both the Dock and the Combi option reduce the barrier function of the infrastructure and may therefore be attractive policy options, while the multifunctionality is just the instrument through which this objective is met.

These results show that bringing the infrastructure underground creates favourable opportunities for multifunctional land use. The choice for the Dock alternative as the most optimal filling in of the project area, however, is mainly based on the increase in connectivity between the different areas of Amsterdam, which, in this alternative, will no longer be separated by the infrastructure. The importance of infrastructure for the Amsterdam South Axis is recognised and travelers are best facilitated in the Combi and Dike alternative.

6. Concluding remarks

The concept of multifunctional land use has turned out to be a very interesting one in urban and infrastructure planning. Economic research has traditionally put great interest in mainly monofunctional land use based on issues of efficiency and (more recently) sustainability. Multifunctional land use, however, attempts to combine several socio-economic functions in the same area, so as to conserve scarce space and to exploit economies of synergy. Clearly, multifunctional land use shows several relations with monofunctional land use, but is, nevertheless, different in that, from a project perspective, projects can only be considered more functional or less multifunctional. In order to operationalise the concept of multifunctional land use, a functional typology of specific land use functions is needed, along with the development of criteria and indicators to measure the degree of multifunctionality of specific land use projects. From a critical analysis of common definitions of multifunctional land use, the most important elements to measure the degree of multifunctionality became clear. Applying these indicators to a case study (the Amsterdam South Axis) showed that different project alternatives might have different degrees of multifunctionality. It is interesting to analyse this in further detail in the light of underlying assumptions regarding the ultimate choice for one of the alternatives. Another future challenge is to adjust the current indicators for a comparison between different projects, instead of an analysis of different alternatives for one project as presented in this paper. Therefore, a reflection on the nature of indicators concerning factors such as aggregation level of land use functions, dispersion, concentration, diversity, interweaving and intensity, taking into account the state of affairs in other disciplines, is likely to be a very interesting exercise.
Acknowledgement

This research is part of a PhD project financed by HABIFORUM, the Dutch expertise network on multifunctional land use.

References

Chapman, D.R. (Divisie Ruimtelijke Ordening), 1988, Masterplan Zuidas, Gemeente Amsterdam.

Nijkamp, P., B. Ubbels and M. Kootse, 2000(b), Infomstruktubrinfrastructure pronounce, duurzaamheidsvisie op Infomstruktubr, Delftse Universitaire Pers, Delft.

Priemus, H., P. Nijkamp en F. Dieleman, 2000, Meervoudig Ruimtegebruik stimulieren en belemmeringen, Statistiek en regionale omsterdings 34, Stichtse studies van Dem, Delft.

1999-1 Jan van den Elsen.

1999-2 Peter Nijkamp.

1999-3 Eitty Lancker.

1999-4 Peter Nijkamp.

1999-5 Peter Nijkamp.

1999-6 Cees Gorter.

1999-7 Frank Bruinma.

1999-8 Peter Nijkamp.

1999-9 M.J.N. Keijer.

1999-10 Mtina van Geenhuizen.

1999-11 Bart Wiegmans.

1999-12 Bas van der Klaauw.

1999-14 Louise Gogran.

1999-16 Hans Kretners.

1999-17 Aura Reggiani.

1999-18 Wai Fu Yang.

1999-19 Gindina Vindigni.

1999-20 Ren Vreeker.

1999-22 P. Rietveld.

1999-23 Mtina van Geenhuizen.

1999-24 Bart Wiegmans.

1999-25 Enne Masurel.

1999-26 Cees Gorter.

1999-28 Udo Kock.

1999-29 Udo Kock.

1999-30 Louise Gogran.

1999-31 Gerard J. van den Berg.

1999-32 Hans Kretners.

1999-33 Aura Reggiani.

1999-34 Wai Fu Yang.

1999-36 Peter Nijkamp.

1999-37 Gabriella Vindigni.

1999-38 Peter Nijkamp.

1999-39 Peter Nijkamp.

1999-40 Peter Nijkamp.

1999-41 Peter Nijkamp.

1999-42 Cees Gorter.

1999-43 Peter Nijkamp.

1999-44 Peter Nijkamp.

1999-45 Peter Nijkamp.

1999-46 Cees Gorter.

1999-47 Frank Bruinma.

1999-48 Peter Nijkamp.

1999-49 Peter Nijkamp.

1999-50 Cees Gorter.

1999-51 Peter Nijkamp.

1999-52 Frank Bruinma.

1999-53 Peter Nijkamp.

1999-54 Cees Gorter.

1999-55 Peter Nijkamp.

1999-56 Cees Gorter.

1999-57 Peter Nijkamp.

1999-58 Cees Gorter.

1999-59 Peter Nijkamp.

1999-60 Cees Gorter.

1999-61 Peter Nijkamp.

1999-63 Mtina van Geenhuizen.

1999-64 Bart Wiegmans.

1999-65 Enne Masurel.

1999-66 Cees Gorter.

1999-67 Frank Bruinma.

1999-68 Peter Nijkamp.

1999-69 Peter Nijkamp.

1999-70 Cees Gorter.

1999-71 Peter Nijkamp.

1999-72 Cees Gorter.

1999-73 Peter Nijkamp.

1999-74 Cees Gorter.

1999-75 Peter Nijkamp.

1999-76 Cees Gorter.

1999-77 Peter Nijkamp.

1999-78 Cees Gorter.

1999-79 Peter Nijkamp.

1999-80 Cees Gorter.

1999-81 Peter Nijkamp.

1999-82 Cees Gorter.

1999-83 Peter Nijkamp.

1999-84 Cees Gorter.

1999-85 Peter Nijkamp.

1999-86 Cees Gorter.

1999-87 Peter Nijkamp.

1999-88 Cees Gorter.

1999-89 Peter Nijkamp.

1999-90 Cees Gorter.

1999-91 Peter Nijkamp.

1999-92 Cees Gorter.

1999-93 Peter Nijkamp.

1999-94 Cees Gorter.

1999-95 Peter Nijkamp.

1999-96 Cees Gorter.

1999-97 Peter Nijkamp.

1999-99 How do people get to the railway station? A spatial analysis of the first and the last part of multimodal trips, pp. 21.

1999-100 Meta-analysis: A methodology for research synthesis, pp. 10.

1999-103 Competition Between Unemployed and Non-Participants, and Unemployment Hysteresis, pp. 56.

1999-104 The Duration of Unemployment in Russia, pp. 43.

1999-105 The learning capability of regions: patterns and policies, pp. 23.

1999-107 Competition Between Unemployed and Non-Participants, and Unemployment Hysteresis, pp. 56.

1999-108 The Duration of Unemployment in Russia, pp. 43.