CONTENTS

1 INTRODUCTION 1
 1.1 Component-based systems 1
 1.1.1 What do we mean by connector? 2
 1.1.2 Illustrating example 2
 1.2 Research Context 4
 1.2.1 Reo 5
 1.3 Research Questions 6
 1.4 Thesis Overview and Contributions 7

2 COMPONENT CONNECTORS 11
 2.1 Basic concepts 11
 2.1.1 Configuration 11
 2.1.2 Ports and I/O operations 12
 2.1.3 Memory 13
 2.1.4 Dataflow Behaviour 13
 2.2 Reo 14
 2.2.1 Channels 14
 2.2.2 Nodes 15
 2.2.3 Abstract Components 17
 2.2.4 Primitive Connectors 18
 2.2.5 Reo Operations 18
 2.2.6 Connector Language: Conlang 20
 2.3 Compositionality of Dataflow Behaviour 20

3 CONNECTOR COLOURING MODEL 23
 3.1 Overview 23
 3.1.1 Chapter structure 24
 3.2 Connector colouring 24
 3.2.1 Colours 25
 3.2.2 Colouring table 26
 3.2.3 next function 28
 3.3 2-colouring: Synchronisation 29
 3.3.1 Primitives 29
 3.3.2 Component connectors 33
 3.3.3 Example: composite connector 34
 3.3.4 Dataflow through a connector 35
 3.4 3-colouring: Synchronisation and Context Dependency 36
3.4.1 LossySync channel’s inadequacy due to context-dependency 36
3.4.2 3-colouring 37
3.4.3 Example: Priority merger 44
3.4.4 Causality Loops 46
3.5 Constructive 3-colouring 47
3.5.1 Causal relation 47
3.6 Operation hide: abstracting from internals 50
3.7 Implementing Connector Colouring 58
3.7.1 Requirements for a Distributed Implementation of Reo 58
3.7.2 Algorithm Scheme for Connector Colouring 59
3.7.3 Reolite: A Non-Distributed Reo Implementation 60
3.7.4 Distributed Algorithm 62
3.7.5 Discussion 65
3.7.6 Summary of Implementation Status 66
3.8 Related Work 67

4 INTENTIONAL AUTOMATA MODEL 71
4.1 Intentional Automata Models for Connectors 72
4.1.1 Deterministic Intentional Automata 72
4.1.2 Non-deterministic Intentional Automata 74
4.2 Connector Equivalence 77
4.2.1 Bisimilarity 78
4.2.2 Weak-bisimilarity 78
4.3 Operations on Intentional Automata 80
4.3.1 Product 80
4.3.2 Hiding 83
4.3.3 Elimination of internal transitions 89
4.3.4 Observational equivalence is a congruence 92
4.4 Minimal Models 94
4.4.1 Reachability 94
4.4.2 Collapsing observationally equivalent states 94
4.5 Discussion 95

5 REO AUTOMATA MODEL 97
5.1 Reo Connectors Configuration 98
5.2 Reo Automata 100
5.3 Reo Primitives 107
5.4 Context-dependent Channels 111
5.5 Composite Connectors 114
5.5.1 Operations On Configuration Tables 114
5.6 Other Intentional Automata Models for Connectors 122
5.7 Discussion 124
CONTENTS

6 Connector Simulation and Animation 127
 6.1 Introduction: what do we mean by connector animation? 127
 6.1.1 Example 1 128
 6.1.2 Example 2 130
 6.1.3 Example 3 132
 6.2 Connector Animation Framework 135
 6.2.1 Animation Specification Model 135
 6.2.2 Reo Animation Specification 140
 6.2.3 Animation Descriptions 151
 6.3 Connector Animation Implementations 152
 6.3.1 ReoFlash 152
 6.3.2 Connector Animation Eclipse Plugin 152
 6.4 Related work 156

7 Conclusions 159
 7.1 Answers To The Research Questions 159
 7.2 Directions For Future Work 161

BIBLIOGRAPHY 163

SUMMARY 171

Sammaenvatting (dutch summary) 172