Radiosurgery of brain arteriovenous malformations: from target delineation to obliteration

Dennis Robert Buis
The studies described in this thesis were conducted at the Departments of Neurosurgery, Radiation Oncology and Radiology of the VU University Medical Center, Amsterdam, The Netherlands.

Radiosurgery of brain arteriovenous malformations: from target delineation to obliteration
Buis, Dennis R.
Amsterdam: VU Universiteit, Faculteit Geneeskunde
Thesis VU University, with a summary in Dutch
ISBN: 978-90-9025748-8
Cover design and lay-out: Esther Beekman (www.estherontwerpt.nl)
Printed by: Ipskamp Groep

Financial support for publication of this thesis from following sources is gratefully acknowledged: B. Braun Medical B.V.; Carl Zeiss B.V.; Codman Johnson & Johnson; Elekta B.V.; Integra LS; Neurosurgical Center Amsterdam; Nycomed B.V.; Promedics Medical Systems B.V.; The Netherlands Heart Foundation and the Van Leersum Fund, Royal Netherlands Academy of Arts and Sciences.

©2010 D.R. Buis, Amsterdam
No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means, without permission of the author. The copyright of the publications remains with the publishers.
If I could write the beauty of your eyes,
And in fresh numbers number all your graces,
The age to come would say 'This poet lies,
Such heavenly touches ne'er touch'd earthly faces.'

William Shakespeare, Sonnet XVII

Once our hearts get broken, they never fully heal. They always ache. But perhaps a broken heart is a more loving instrument. Perhaps only after our hearts have cracked wide open, have finally and totally unclenched, can we truly know love without boundaries.

Fred J. Epstein, neurosurgeon, 1937 - 2006

Aan mijn ouders
Table of contents

Chapter 1 General Introduction and outline of this thesis 8

Part I

Chapter 2 Spontaneous regression of brain arteriovenous malformations 30
Adapted from: Buis DR, van den Berg R, Lycklama à Nijeholt GJ, van der Worp HB, Dirven CM, Vandertop WP. Spontaneous regression of brain arteriovenous malformations—a clinical study and a systematic review of the literature.

Chapter 3 Target delineation on digital subtraction angiography 42

Chapter 4 Target delineation on Magnetic Resonance Angiography 56

Chapter 5 Radiosurgery of brain arteriovenous malformations in children 70

Part II

Chapter 6 White matter changes after radiosurgery for brain arteriovenous malformations 86
Adapted from: Berg van den R, Buis DR, Lagerwaard FJ, Lycklama à Nijeholt GJ, Vandertop WP. Extensive white matter changes after stereotactic radiosurgery for brain arteriovenous malformations: a prognostic sign for obliteration?
Neurosurgery. 2008 Dec;63(6):1064-9

Chapter 7 The clinical outcome after repeated radiosurgery for brain arteriovenous malformations 100

Chapter 8 The predictive value of 3D- TOF MR angiography in assessment of brain AVM obliteration after stereotactic radiosurgery 114
Submitted for publications.

Chapter 9 Final considerations and a glance at the future of radiosurgery for brain AVMs 128

Chapter 10 Summary in Dutch and English 142

Chapter 11 Appendix: Color intensity projections of digital subtraction angiography 154
Adapted from: Cover KS, Lagerwaard FJ, van den Berg R, Buis DR, Slotman BJ. Color intensity projection of digitally subtracted angiography for the visualization of brain arteriovenous malformations.
Neurosurgery. 2007 Mar;60(3):511-4; discussion 514-5.

Publications 196
Dankwoord 200
Curriculum Vitae 204