Contents

1 General introduction 1
 1.1 Introduction 1
 1.2 Example of model construction and analysis 3
 1.2.1 From conceptual framework to model construction ... 3
 1.2.2 Example of mathematical model construction from conceptual framework 5
 1.2.3 Model analysis using bifurcation theory 8
 1.2.4 Incorporation of toxicant effect with DEBtox module 12
 1.2.5 Bifurcation analysis of exposed ecosystem 13
 1.2.6 2D-bifurcation analysis of exposed ecosystem 14
 1.2.7 Bifurcation analyses as input for hazard and risk assessment 16
 References .. 17

2 Modelling long-term ecotoxicological effects on an algal population under dynamic nutrient stress ... 21
 2.1 Introduction 22
 2.2 Material and Methods 23
 2.2.1 Experimental data of system with nitrogen, Cryptomonas sp. and toxicant 23
 2.2.2 Formulation of the model 23
 2.2.3 Toxicant concentration-effect relationships 27
 2.2.4 Equilibrium density and the PET 28
 2.2.5 Data fitting method 29
 2.3 Results ... 29
 2.3.1 Data fitting results 29
 2.3.2 Algal population extinction threshold 30
 2.4 Discussion 33
 2.4.1 Comparing results with literature 33
 2.4.2 Assumption justification 34
 2.5 Conclusions 35
3 Feeding threshold for predators stabilises predator-prey systems

3.1 Introduction .. 44
3.2 Formulation of the model 45
3.3 Analysis of the models 49
 3.3.1 The Rosenzweig-MacArthur model 49
 3.3.2 The mass-balance model 51
3.4 Applying the MB model on experimental data 54
 3.4.1 Experimental setup and data description 54
 3.4.2 Fitting method 54
 3.4.3 Fitting results 55
3.5 Discussion and conclusions 58
3.6 Appendix ... 60
References .. 61

4 Modelling direct and indirect ecotoxicological effects on an algivorous ciliate population under dynamic nutrient stress

4.1 Introduction .. 66
4.2 Material and Methods 67
 4.2.1 Data description 67
 4.2.2 Formulation of the model 68
 4.2.3 Data fitting method 75
4.3 Results .. 75
4.4 Discussion and conclusions 80
4.5 Appendix ... 82
References .. 85

5 Sublethal toxic effects in a simple aquatic food chain

5.1 Introduction .. 88
5.2 Model formulations and analysis 91
5.3 Model for nutrient-prey system 92
 5.3.1 Unstressed nutrient-population system 94
 5.3.2 Stressed nutrient-population system 94
5.4 Analysis of the nutrient-prey system 97
 5.4.1 Unstressed nutrient-prey system 99
 5.4.2 Stressed nutrient-prey-toxicant system 101
5.5 Model for nutrient-prey-predator system 105
 5.5.1 Stressed system: both populations affected by toxicant . 105
 5.5.2 Stressed system: predator unaffected by toxicant 110
6 Sublethal toxicological effects in a generic aquatic ecosystem 127
6.1 Introduction 128
6.2 Formulation of the ecological model 132
6.3 Analysis of the unexposed aquatic system 136
 6.3.1 Results for the unexposed aquatic system 137
6.4 Formulation of the ecotoxicological model 139
 6.4.1 Model for the fate of the toxicant 139
 6.4.2 Simplified bioaccumulation model 145
 6.4.3 The effect module 146
6.5 Analysis of the exposed generic aquatic system 147
 6.5.1 Analysis of the exposed R-system 147
 6.5.2 Results for the exposed aquatic system 152
6.6 Discussion 153
6.7 Conclusions 157
6.8 Appendix A 159
6.9 Appendix B 162
References 165

7 Discussion 171

8 English summary 177
 References 183

Nederlandse samenvatting 185

List of publications 189

Dankwoord 191

Acknowledgements – Project Modelkey 194