Towards ambulatory assessment of spinal loading in the field

Gert S. Faber
The work reported in this thesis was performed at the Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, The Netherlands. The research was funded by the Dutch Ministry of Economic Affairs and SenterNovem (the FreeMotion project), Stichting Arbouw, the Royal Netherlands Navy, and STEP Nederland.

Cover photo: The cover photo was taken on the salt planes of Uyuni, Bolivia.
ISBN: 9789053830086
Email: gertfaber@gmail.com

© G. S. Faber, 2010
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without prior written permission from the author.
Towards ambulatory assessment of spinal loading in the field

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Bewegingswetenschappen op vrijdag 25 juni 2010 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105

door

Gert Simon Faber

geboren te Amsterdam
promotor: prof.dr. J.H. van Dieën
copromotor: dr. I. Kingma
CONTENTS

Publications by the author

Chapter 1 General introduction

Chapter 2 The effects of ergonomic interventions on low back moments are attenuated by changes in lifting behaviour

Chapter 3 Effects of horizontal transport and familiarisation with different working methods on low back loading in manual lifting

Chapter 4 Effect of ship motion on spinal loading during manual lifting

Chapter 5 Validity of estimates of spinal compression forces obtained from worksite measurements

Chapter 6 Optimal inertial sensor location for ambulatory measurement of trunk inclination

Chapter 7 Determination of joint moments with instrumented force shoes in a variety of tasks

Chapter 8 Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors

Chapter 9 Epilogue

References

Samenvatting

Dankwoord
PUBLICATIONS BY THE AUTHOR

International Journals

Kingma I, Faber GS & van Dieën JH. How to lift a box that is too large to fit between the knees? Submitted.

Faber GS, Kingma I, Schepers HM, Veltink PH & van Dieën JH. Determination of joint moments with instrumented force shoes in a variety of tasks. Submitted. *

Faber GS, Kingma I & van Dieën JH. Effects of horizontal transport and familiarization with different working methods on low back loading in manual lifting. Conditionally accepted in Ergonomics. *

van Dieën JH, Faber GS, Loos RCC, Kuijer PPFM, Kingma I, Van der Molen HF & Frings-Dresen MHW. Validity of estimates of spinal compression forces obtained from worksite measurements. Ergonomics (in press).*

Faber GS, Kingma I, Bakker AJ & van Dieën JH. Low-back loading in lifting two loads beside the body compared to lifting one load in front of the body. Journal of Biomechanics (2009), 42(1), 35-41.
Faber GS, Kingma I, Bruijn SM & van Dieën JH. Optimal inertial sensor location for ambulatory measurement of trunk inclination. *Journal of Biomechanics* (2009), 42(14), 2406-2409. *

Faber GS, Kingma I, Kuijer PPFM, van der Molen HF, Hoozemans MJM, Frings-Dresen MHW & van Dieën JH. Working height, block mass and one- vs. two-handed block handling: the contribution to low back and shoulder loading during masonry work. *Ergonomics* (2009), 52(9), 1104-1118.

Faber GS, Kingma I & van Dieën JH. The effects of ergonomic interventions on low back moments are attenuated by changes in lifting behaviour. *Ergonomics* (2007), 50(9), 1377-1391. *

Kingma I, **Faber GS**, Bakker AJM & van Dieën JH. Can low back loading during lifting be reduced by placing one leg beside the object to be lifted? *Physical Therapy* (2006), 86(8), 1091-1105.

* Chapters of this thesis

International conference proceedings

Faber GS, Kingma I & van Dieën JH. Hand support reduces peak L5/S1 moments in one-handed lifting. *American Society of Biomechanics conference* (submitted), Providence, United States of America.

Faber GS, Kingma I & van Dieën JH. Effect of lifting two loads beside the body instead of one in front of the body on low back loading. *International Society of Biomechanics conference* (2007b), Taipei, Taiwan.

van der Molen HF, Kuijer PPFM, Hopmans PPW, Houweling AG, Faber GS, Hoozemans MJM & Frings-Dresen MH. Is block weight reduction an effective strategy to reduce work demands and workload? *Premus conference* (2007), Boston, United States of America.

Publications in Dutch

