Serie research memoranda

Vacancy Durations: Search or Selection?

J.C. van Ours
G. Ridder

Research Memorandum 1992-16
April 1992
VACANCY DURATIONS: SEARCH OR SELECTION?

J.C. van Ours
Department of Economics
Vrije Universiteit
1007 MC Amsterdam
The Netherlands

G. Ridder
Department of Economics
Rijksuniversiteit Groningen
9700 AV Groningen
The Netherlands

Amsterdam/Groningen, March 1992
Abstract

In van Ours and Ridder (1992) we showed that employers use a nonsequential search strategy, when filling job vacancies. In this paper we explicitly decompose a vacancy duration into an application period and a selection period. We formulate a simple theory for the determination of the application period. By making some distributional assumptions we obtain estimates of the average application and selection period. We conclude that vacancy durations are devoted to selection.

Keywords and phrases: Vacancies, duration, hiring

JEL-classification: J6
1. Introduction

There is a renewed interest in the use of vacancy data in empirical macro-economics. Following the lead of Diamond (1971), economists consider the matching of jobs and workers in the labor market as a productive activity, that can be described by a production function, the matching function. In the matching function the number of new hires is related to the number of workers (employed or unemployed) who are looking for a job and the number of jobs who are looking for a worker, i.e. the number of job vacancies\(^1\). If the matching function has constant returns to scale, as is confirmed in most empirical studies, then the matching function implies a stable relationship between the average duration of unemployment and the average duration of vacancies.

As stressed by Blanchard and Diamond (1989) and Jackman, Layard and Pissarides (1989), decomposing changes of these durations in movements along and shifts of this relation is helpful in understanding the causes of cyclical and secular changes in the unemployment rate. For instance, Jackman, Layard and Pissarides find that between 1960 and 1982 the unemployment/vacancy duration curve has shifted outward in the UK, and by a process of elimination they conclude, that the cause of this shift is that the unemployed have decreased their intensity of search.

Although the measurement of unemployment has its own ambiguities, it is clear that the concept of a job vacancy is the more elusive of the two. In a steady state the number of job vacancies is equal to the product of the rate at which vacancies are created and the average duration of the vacancies. It is usually assumed, that the number of vacancies at a firm is equal to the difference between the number of productive jobs and the present number of employees, so that the rate at which vacancies are created is equal to the sum of the net rate at which productive jobs are generated and the rate at which employees quit. The determination of the duration of the vacancy depends on the search strategy of the employers. In van Ours and Ridder (1992) we show that employers use a nonsequential search strategy: applicants arrive shortly after the vacancy has been posted, and the rest of the vacancy duration is used to select a new

\(^1\)Although the matching function approach goes back to at least Holt (1970), more recent contributions are Jackman, Layard and Pissarides (1989) and Blanchard and Diamond (1989).
employee from the pool of applicants. Hence, a vacancy duration consists of an application period, during which applicants arrive, and a selection period, during which a new employee is chosen from the pool of applicants. In this paper we propose a simple method to estimate the length of both periods using data on applicant arrivals. We find, that employers spend far more time on selecting than on attracting applicants.

The distinction between application and selection is important for an unambiguous interpretation of shifts of the unemployment/vacancy duration curve. If vacancy durations are mainly selection periods, then an increase in the vacancy duration for a given duration of unemployment does not necessarily imply that the search effort of the unemployed has decreased. It only indicates, that employers spend more time on, and presumably put more effort in, the selection of a new employee from a pool of applicants, that is formed in the same short time interval as before.

Because our data pertain to a particular year, 1987, we do not know how application and selection periods vary over the cycle. This is a major weakness of our results. Our contribution is a simple method to estimate both components of the vacancy duration. If in the vacancy surveys, that in The Netherlands are conducted yearly, a question on the number of applicants for a vacancy would be included, our method could be used to obtain yearly estimates of both components.

2. Some theoretical considerations

Van Ours and Ridder (1992) find that in their sample of job vacancies the applicant arrival rate is high during the first few weeks after a vacancy has been posted and is small during the rest of the duration of the vacancy, while the rate at which vacancies are filled is almost zero during the first month and increases during the next four months. This indicates that employers use a nonsequential search strategy when filling job vacancies. Most new employees are hired from a pool of applicants that is formed shortly after the vacancy is opened. Moreover, it takes some time before a suitable new employee is selected from the pool of applicants.

This result comes as no surprise, because it is well-known (Gal,
Landsberger, and Levykson (1981) and Morgan (1983)), that a compound strategy in which the searcher can generate more than one offer at some cost dominates a sequential search strategy. Moreover, employers put effort into the assessment of the suitability of applicants (Barron and Bishop (1985) and Barron, Bishop, and Dunkelberg (1985)), and this assessment takes time. Hence, the empirical finding that a vacancy duration can be divided in an application period and a selection period makes sense from a search theoretical perspective.

What determines the length of the application and selection periods? First, we shall present a very stylized model for the determination of the application period, that we denote by T. The selection period has length S. During the application period applicants arrive at a rate \(\mu \). An applicant is characterized by the revenue product \(x \), which is a draw from a distribution with distribution function \(F \). At the end of the application period there is a pool of \(N(T) \) applicants. In the selection period the revenue product of the applicants is assessed, and at the end of the selection period the applicant with the largest revenue product is selected from the pool of applicants. The remaining pool of applicants at time \(T+S \) is smaller than \(N(T) \) due to attrition from the pool at rate \(\delta \). In the sequel we ignore random variation around the mean in the size of the pool at \(T+S \), i.e. the size of the pool at \(T+S \) is \(\mu T-\delta S \).

Employers set the wage \(w \) before the start of the application period on the basis of the expected productivity of the new employee. Morale problems with incumbent employees will restrict the employer's possibilities to bargain over the wage, and we shall assume that such bargaining does not occur.

For given \(S \) the employer maximizes the following expected discounted (at rate \(r \)) profit

\[
E(P(T,S)) = \frac{e^{-r(T+S)}}{r} \left(\int_{0}^{\infty} (1-F(x)) \mu T-\delta S \, dx - w \right) = \frac{e^{-r(T+S)}}{r} p(T,S)
\]

If \(p(T,S) \) denotes the instantaneous expected profit flow, then the first order condition is

\[
r = \frac{\partial \log(p(T,S))}{\partial T}
\]
Hence T equates the discount rate to the relative change in the profit rate associated with a one time unit increase in T.

The solution to (2) satisfies

\[\frac{\partial \mu T}{\partial \mu} > 0 \]
\[\frac{\partial \log T}{\partial \log \delta} = \frac{\partial \log T}{\partial \log S} = \frac{\delta S}{\mu T} > 0 \]
\[\frac{\partial T}{\partial w} > 0 \]
\[\frac{\partial T}{\partial r} < 0 \]

From (3a) it follows that the size of the pool of applicants increases with the arrival rate of applicants. The sign of the derivative of the application period with respect to the arrival rate is ambiguous\(^4\), but likely to be negative. From (3b) we conclude that the elasticities of T with respect to the attrition rate and the selection period are predicted to be identical and equal to the relative size of the attrition and the initial pool of applicants. In particular, $\frac{\partial T}{\partial S}$ if $\delta = 0$. Hence, if there is no attrition the application and selection periods are independent. In a tight labor market μ will be small and δ large. In that case we expect a relatively long application period, and the reverse holds in an easy labor market. Hence, we predict procyclical variations in T. From (3c) we obtain that jobs that command a high wage, have a relatively long application period.

If we take the size of the pool of applicants μT as a measure of extensive search, then the inequalities (3a) and (3c) are in line with the results of Barron and Bishop (1985) and Barron, Bishop and Dunkelberg (1985), who find that there is more extensive search for vacancies that have a large arrival rate of applicants, and that there is a positive correlation between the starting wage and extensive search.

Until now we have treated the selection period S as given. Building a

\(^3\)It is not difficult to show that (2) has a unique positive solution.

\(^4\)If $T > 1$ or if firms make zero profit on the marginal employee, then the application period decreases with the arrival rate of applicants.
model for S requires knowledge of the selection technology used by employers. The length of the selection period is determined by the selection capacity of the firm and the intensity of the selection. The intensity of selection, measured by the number of hours spent on selection per applicant, has been studied by Barron et al., who find that restrictions on firing employees and the training involved in the job have a large positive effect on the intensity of the selection procedure. In general, we expect that selection is more intensive if the contract is more risky from the point of view of the employer. In our empirical model we shall include variables to test this hypothesis.

3. Data and estimation results

3.1. Data

The data are taken from the Organization of Strategic Labor Market Research (OSA) vacancy survey. This survey was conducted in two stages. In the first stage with interviews in November–January 1986–1987, a sample of employers gave information on the incomplete duration of their vacancies and the cumulative number of applicants at the date of the first interview of the survey. Furthermore, some characteristics of the employer and the vacancies were recorded. Unfortunately, neither characteristics of the applicants, nor wage offers (if any) made to applicants were collected. In the second stage of the survey, conducted some four months later, employers were asked for the date at which the vacancies of the first interview were filled (if they were filled). In this paper we use a subsample of 670 vacancies, of which 496 (74%) were filled at the date of the second interview. The data are summarized in table 1.

Table 1 about here

Most variables need no discussion. The advertisement dummy refers to the placement of a personnel advertisement (1=yes), and the labor exchange dummy is 1 if the labor exchange has been notified. If the selection

\[^{5}\text{A more detailed description of the survey and the selection that is used in the present paper can be found in van Ours and Ridder (1992).}\]
procedure involves a psychological test then the corresponding dummy is 1.

3.2. An empirical model

To obtain estimates of the average application and selection periods we propose a simple statistical model that uses information on the length of the vacancy and the arrival of applicants. To be specific, we assume that T and S are Exponentially distributed with parameters \(\theta \) and \(\lambda \). Applicants arrive according to a Poisson process with intensity \(\mu \). We relate the intensities to a vector of explanatory variables \(X \)

\[
(4) \quad \mu = \exp(\beta'X) \quad , \quad \theta = \exp(\gamma'X) \quad , \quad \lambda = \exp(\zeta'X)
\]

There is no hiring during the application period, and no applicants arrive during the selection period. This is in line with the evidence in van Ours and Ridder (1992).

Let \(t_1 \) denote the incomplete vacancy duration at the date of the (first) interview. The number of applicants at \(t_1 \) has density (with respect to the counting measure)

\[
(5) \quad f(k|t_1,T) = \begin{cases} (\mu t_1)^k \exp(-\mu t_1)/k! & \text{if } t_1 < T \\ (\mu T)^k \exp(-\mu T)/k! & \text{if } t_1 \geq T \end{cases}
\]

Integrating out \(T \) we obtain

\[
(6) \quad f(k|t_1) = \int_0^{t_1} \left((\mu T)^k e^{-\mu T} / k! \right) \theta e^{-\theta T} dT + \left((\mu t_1)^k e^{-\mu t_1} / k! \right) e^{-\theta t_1}
\]

and the probability that no applicant has arrived by \(t_1 \) is

\[
(7) \quad f(0|t_1) = \frac{\theta + \mu e^{-\mu + \theta t_1}}{\mu + \theta}
\]
In the likelihood function we only use the information that either no person (group 1) or at least one person (group 2) has applied at the date of the first interview. In this way we minimize the impact of measurement and recollection errors. Inspection of the data reveals that there is considerable rounding of the number of applicants, and that for a number of vacancies the reported number of applicants in the second interview is lower than that reported in the first interview. We expect that the information on whether there has been at least one applicant or not is less affected by recollection errors than the reported number of applicants. The resulting contribution to the likelihood function is

\[L_1 = \prod_{i=1}^{n} f(0 | t_1) \prod_{j=2}^{n} (1-f(0 | t_j)) \]

Because there is no hiring during the application period, we find for the density function of the (complete) vacancy duration

\[h(t | T) = \begin{cases} 0 & \text{if } t < T \\ \lambda \exp(-\lambda(t-T)) & \text{if } t \geq T \end{cases} \]

Hence

\[h(t) = \frac{\lambda \theta(e^{-\lambda t} - e^{-\lambda T})}{\theta - \lambda} \]

In the likelihood function we shall use information on the conditional residual duration \(t_2 \) given the incomplete duration \(t_1 \). The residual duration is observed at the second interview. The corresponding density is

\[h(t_2 | t_1) = \frac{h(t_1 + t_2)}{1-H(t_1)} \]

with \(H \) the distribution function of the complete vacancy duration.
At the date of the second interview some vacancies have been filled at a known date (group 1), some will still be open (group 2), and some have been filled at some unknown date between the first and second interview (group 3). Hence, the (conditional on t_1) likelihood function is

\[L_2 = \prod_1 h(t_2 | t_1) \prod_2^{\infty} h(s | t_1)ds \prod_3^{12} h(s | t_1)ds \]

Note that to minimize recollection errors we do not use the information on the incomplete vacancy duration at the date of the first interview. The complete likelihood function is the product of L_1 in (8) and L_2 in (12).

3.3. Estimation results

By maximizing the likelihood function, i.e. the product of L_1 and L_2, we obtain Maximum Likelihood estimates of the parameters of the model. These ML estimates are reported in table 2.

Table 2 about here

Given the limited amount of information that we use, it is not surprising that many parameters are poorly determined. More reliable data on the number of applicants can improve this substantially. In particular, the regression parameters that refer to the application period have large variances: the included explanatory variables seem to have no impact on the mean application period. For that reason we estimated a restricted version of the model in which the mean application period is constant. The results are reported in the second column of table 2.

If we concentrate on the parameters that are significantly different from zero, then we conclude that the mean selection period increases with the required level of education and experience. Given the restrictions on the firing of employees in the Netherlands, it is likely that employers perceive contracts with higher skilled workers as relatively risky. Note that required education and experience have no effect on the applicant arrival rate. It comes as no surprise, that the applicant arrival rate is much larger for vacancies that have been advertised. Notification of the
labor exchange does not lead to a larger flow of applicants. Larger firms also attract more applicants, but the monitoring problem that one expects in large firms, does not lead to a longer selection period. Selection procedures that involve a psychological test take more time than procedures without such a test. Selection periods for commercial jobs are relatively short.

From L_1 in (8) we can estimate β_A and β_{T1}, and from L_2 in (12) β_T and β_S. Hence, as a simple specification test we can check whether the estimates of β_T agree. For both sets of estimates in table 2 we can not reject equality (LR-statistics 11.6 (9 d.f.) and .2 (1 d.f.)). Moreover, it is easily verified, that the simplification in column 2 is allowed (LR-statistic 12.8 (8 d.f.)). Finally, we introduced unobserved heterogeneity in the constant of λ (two mass-points with locations estimated jointly with the corresponding probabilities). This did not improve the fit of the model significantly ($-\log L$ is 1956.8).

Using the estimates in the second column of table 2 we compute mean selection and application periods and the expected number of applicants. The explanatory variables are set at their mean values reported in the last column of table 1. The results are

\[
\begin{align*}
\text{Mean application period:} & \quad 3.1 \text{ weeks} \\
\text{Mean selection period:} & \quad 14.6 \text{ weeks} \\
& \quad \text{Required education primary level} \quad 9.9 \text{ weeks} \\
& \quad \text{Required education university} \quad 21.1 \text{ weeks} \\
& \quad \text{No experience required} \quad 12.1 \text{ weeks} \\
\text{Expected cumulative number of applicants during application period:} & \quad 4.3
\end{align*}
\]

We conclude from these computations that vacancy durations are mainly selection periods. This is in line with the results reported in van Ours and Ridder (1992). In comparing the expected number of applicants reported here with the number in table 1, one has to bear in mind that the latter number is most likely affected by recollection errors. Our confidence in the results is boosted by the sensible patterns that emerge by looking at different types of vacancies.
The estimated mean application period is short. This is not surprising. In 1986-1987 about 1% of the employers in manufacturing reported production problems because of difficulties in hiring employees. In the 70's this number fluctuated around 12%. Hence, in the period of the survey very few employers had difficulties in attracting applicants, and this is reflected in a short mean application period.

4. Conclusion

In this paper we have proposed a simple method for the decomposition of (average) vacancy durations in application and selection periods. Our estimates confirm our earlier result that vacancy durations are mainly selection periods, and that attracting a pool of applicants takes relatively little time. Our results imply that the shift in the unemployment/vacancy duration curve, that has been observed by a number of authors may be due to longer selection periods, i.e. by increased choosiness on the side of the employers, and not to a lower search intensity of the unemployed. For more definitive conclusions we would like to repeat the analysis at various stages of the business cycle.

Acknowledgement: The authors would like to thank Ruud Koning and Ken Burdett for helpful comments.

6These numbers are taken from the CBS Business Cycle Test (various years).
Literature

Table 1. Sample means

<table>
<thead>
<tr>
<th></th>
<th>Filled at 2nd interview</th>
<th>Open at 2nd interview</th>
<th>All vacancies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required education (level)</td>
<td>2.98</td>
<td>3.29</td>
<td>3.06</td>
</tr>
<tr>
<td>Required experience (years)</td>
<td>1.21</td>
<td>1.73</td>
<td>1.35</td>
</tr>
<tr>
<td>Type of job</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>0.48</td>
<td>0.27</td>
<td>0.42</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.23</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>Recruitment channels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advertisement</td>
<td>0.59</td>
<td>0.58</td>
<td>0.59</td>
</tr>
<tr>
<td>Labor exchange</td>
<td>0.31</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>Firm characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of employees (× 1000)</td>
<td>0.39</td>
<td>0.50</td>
<td>0.44</td>
</tr>
<tr>
<td>Psychological test</td>
<td>0.25</td>
<td>0.39</td>
<td>0.29</td>
</tr>
<tr>
<td>Elapsed duration (months)</td>
<td>1.82</td>
<td>2.53</td>
<td>2.01</td>
</tr>
<tr>
<td>Cumulative number of applicants at date first interview</td>
<td>12.1</td>
<td>8.0</td>
<td>11.1</td>
</tr>
<tr>
<td>N</td>
<td>496</td>
<td>174</td>
<td>670</td>
</tr>
</tbody>
</table>

1) The levels are:
 1 = primary
 2 = extended primary
 3 = secondary
 4 = higher vocational
 5 = university

2) CBS classification: 3, 4, 5
 (service, clerical, commercial)

3) CBS classification: 6, 7
Table 2. Estimation results (standard errors)

<table>
<thead>
<tr>
<th>Applicant arrival rate (μ)</th>
<th>Constant</th>
<th>Required education</th>
<th>Required experience</th>
<th>Commercial</th>
<th>Manufacturing</th>
<th>Advertisement</th>
<th>Labor exchange</th>
<th>No. of employees</th>
<th>Psychological test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.35 (0.70)</td>
<td>-0.27 (0.21)</td>
<td>0.06 (0.21)</td>
<td>0.72 (0.55)</td>
<td>1.22 (0.84)</td>
<td>1.19 (0.54)**</td>
<td>0.32 (0.41)</td>
<td>0.21 (0.23)</td>
<td>-0.21 (0.36)</td>
</tr>
<tr>
<td></td>
<td>-0.63 (0.44)</td>
<td>0.00 (0.13)</td>
<td>-0.12 (0.09)</td>
<td>0.29 (0.22)</td>
<td>0.22 (0.27)</td>
<td>1.18 (0.19)**</td>
<td>0.18 (0.20)</td>
<td>0.34 (0.17)**</td>
<td>0.15 (0.23)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application period (θ)</th>
<th>Constant</th>
<th>Required education</th>
<th>Required experience</th>
<th>Commercial</th>
<th>Manufacturing</th>
<th>Advertisement</th>
<th>Labor exchange</th>
<th>No. of employees</th>
<th>Psychological test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.93 (0.80)</td>
<td>-0.33 (0.23)</td>
<td>0.24 (0.24)</td>
<td>0.63 (0.70)</td>
<td>1.27 (0.96)</td>
<td>0.06 (0.61)</td>
<td>0.20 (0.42)</td>
<td>-0.19 (0.21)</td>
<td>-0.42 (0.40)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selection period (λ)</th>
<th>Constant</th>
<th>Required education</th>
<th>Required experience</th>
<th>Commercial</th>
<th>Manufacturing</th>
<th>Advertisement</th>
<th>Labor exchange</th>
<th>No. of employees</th>
<th>Psychological test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1.94 (0.32)**</td>
<td>-0.11 (0.09)</td>
<td>-0.19 (0.09)**</td>
<td>0.21 (0.25)</td>
<td>0.38 (0.11)**</td>
<td>-0.39 (0.22)**</td>
<td>-0.20 (0.14)</td>
<td>0.11 (0.17)</td>
<td>0.12 (0.09)</td>
</tr>
<tr>
<td></td>
<td>-1.98 (0.19)**</td>
<td>-0.19 (0.05)**</td>
<td>-0.14 (0.04)**</td>
<td>0.12 (0.09)</td>
<td>-0.06 (0.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- log L | 1951.3 | 1957.7 |
- log L_1 | 319.2 | 324.9 |
- log L_2 | 1626.3 | 1632.7 |

**: significant at 5%-level
*: significant at 10%-level
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991-1</td>
<td>N.M. van Dijk</td>
<td>On the Effect of Small Loss Probabilities in Input/Output Transmission Delay Systems</td>
</tr>
<tr>
<td>1991-2</td>
<td>N.M. van Dijk</td>
<td>Letters to the Editor: On a Simple Proof of Uniformization for Continuous and Discrete-State Continuous-Time Markov Chains</td>
</tr>
<tr>
<td>1991-3</td>
<td>N.M. van Dijk, P.G. Taylor</td>
<td>An Error Bound for Approximating Discrete Time Servicing by a Processor Sharing Modification</td>
</tr>
<tr>
<td>1991-5</td>
<td>N.M. van Dijk</td>
<td>On Error Bound Analysis for Transient Continuous-Time Markov Reward Structures</td>
</tr>
<tr>
<td>1991-6</td>
<td>N.M. van Dijk</td>
<td>On Uniformization for Nonhomogeneous Markov Chains</td>
</tr>
<tr>
<td>1991-7</td>
<td>N.M. van Dijk</td>
<td>Product Forms for Metropolitan Area Networks</td>
</tr>
<tr>
<td>1991-8</td>
<td>N.M. van Dijk</td>
<td>A Product Form Extension for Discrete-Time Communication Protocols</td>
</tr>
<tr>
<td>1991-9</td>
<td>N.M. van Dijk</td>
<td>A Note on Monotonicity in Multicasting</td>
</tr>
<tr>
<td>1991-10</td>
<td>N.M. van Dijk</td>
<td>An Exact Solution for a Finite Slotted Server Model</td>
</tr>
<tr>
<td>1991-11</td>
<td>N.M. van Dijk</td>
<td>On Product Form Approximations for Communication Networks with Losses: Error Bounds</td>
</tr>
<tr>
<td>1991-12</td>
<td>N.M. van Dijk</td>
<td>Simple Performability Bounds for Communication Networks</td>
</tr>
<tr>
<td>1991-13</td>
<td>N.M. van Dijk</td>
<td>Product Forms for Queueing Networks with Limited Clusters</td>
</tr>
<tr>
<td>1991-14</td>
<td>F.A.G. den Butter</td>
<td>Technische Ontwikkeling, Groei en Arbeidsproductiviteit</td>
</tr>
<tr>
<td>1991-16</td>
<td>J.C.J.M. van den Bergh</td>
<td>Sustainable Economic Development: An Overview</td>
</tr>
<tr>
<td>1991-17</td>
<td>J. Barendregt</td>
<td>Het mededingingsbeleid in Nederland: Konjunktuurgevoeligheid en effektiviteit</td>
</tr>
<tr>
<td>1991-18</td>
<td>B. Hanzon</td>
<td>On the Closure of Several Sets of ARMA and Linear State Space Models with a given Structure</td>
</tr>
</tbody>
</table>