Serie Research Memoranda

On Uniformization for Nonhomogeneous Markov Chains

Nico M. van Dijk

Research Memorandum 1991 - 6
January 1991
ON UNIFORMIZATION FOR
NONHOMOGENEOUS MARKOV CHAINS

Nico M. van Dijk
Free University, The Netherlands

Abstract The standard method of uniformization for continuous-time Markov chains is shown to be generalizable to time-inhomogeneous Markov chains. A finite grid approximation is also provided.

Key-words Continuous-time Markov chain * uniformization * approximation.
1. Introduction

The technique of uniformization, as per the pioneering paper by Jensen [6] and also known as randomization, for transforming continuous-time Markov chains in discrete time Markov chains, is widely known as a powerful tool for evaluating continuous-time Markov chain applications such as naturally arising in computer performance evaluation, telecommunication and reliability. Particularly, over the last decade it has been extensively employed for computational and sensitivity analysis of both steady-state and transient measures (e.g. [3], [4], [5], [8], [10], [11], [14]).

However, beyond the essential requirement of uniformly bounded transition rates, the method, so far, seems to be limited to time-homogeneous chains. This latter restriction does seem justified for steady-state analysis but is much less natural when transient analysis is in order. For example, the availability or reliability of a system which is subject to breakdowns will generally deteriorate by age. A time-inhomogeneous version of uniformization, though, does not seem to be available.

This note aims to show that such a version can be concluded by relying upon a uniqueness result that can be obtained from the literature. Roughly speaking, the result is similar in spirit to the homogeneous case in that one can randomly sample Poissonian event-epochs at which transitions can take place according to conditional jump probabilities. The result seems of practical interest as:

(i) It suggests a computational tool by combining iterative numerical computations with random sampling or Monte-Carlo simulation.
(ii) Truncation error bounds are more easily concluded.

To enable practical computation or rather to avoid storage of a continuum of transition matrices, a finite grid approximation is also provided along with an error bound.

2. Model

Consider a continuous-time inhomogeneous Markov chain with state space $S=\{1,2,\ldots,\}$ and at time t a transition rate $q_t(i,j)$ for a transition from state i into state j where we allow $q_t(i,i)>0$. Assume that these transition rates are continuous in t for all i,j as well as that for some constant β and all i,t:

$$(1) \quad q_t(i) = \sum_j q_t(i,j) \leq \beta < \infty.$$

Definition. A family of transition probabilities $\{P_{s,t}|0\leq s,t<\infty\}$ is said to be Markov, hereafter called transition semigroup, if for all i, j, s, t and v:

$$(2) \quad P_{s,s+t+v}(i,j) = \sum_k P_{s,s+t}(i,k) P_{s+t,s+t+v}(k,j).$$

Based on this Markov (or semigroup) property the following uniqueness result can be adopted from the literature.
Lemma 1. There exists a unique transition semigroup \((P_s | 0 \leq s < t < \infty) \) such that for all \(t \) and \(i,j \):

\[
(P_{s,t+h}(i,j) - P_{s,t}(i,j)) = \sum_{l=1}^{\infty} q_{l}(i,j) \sum_{j} q_{l}(i,j)
\]

as \(h \to 0 \), in weak convergent sense, that is with the left hand side of (3) uniformly bounded for all \(t, h, i \) and \(j \), and where \(l_{\{A\}} \) denotes an indicator of an event \(A \).

Proof. In analogy with theorem 4 at p. 364 and the analysis at pp. 347-353 and 364-366 of [2] the existence and uniqueness is shown by the construction:

\[
P_{s,t}(i,j) = \left\{ \begin{array}{ll}
\sum_{k=0}^{\infty} P_{s,t}^{k}(i,j), & \text{where} \\
1_{\{s=0\}} \exp \left(-\int_{s}^{t} q_{u}(i)du\right), & \text{and for } n > 0: \\
\sum_{k=1}^{n} P_{s,t}^{k}(i,j) \exp \left(-\int_{s}^{t} q_{u}(i)du\right) \left(\sum_{m} q_{m}(i,m) P_{u,t}^{k}(m,j)\right)du
\end{array} \right.
\]

As only difference with this reference we need to apply dominated rather than uniform convergence arguments in view of the weak rather than uniform convergence in (3).

Remark 1. Theorem 4 at p. 364 of [2] also yields the construction of a Markov process \(\{X_t | t \geq 0\} \) with transition probabilities \(P_{s,t} \) given by (4) and right-continuous sample paths. As the finite-dimensional distributions are hereby uniquely determined, by virtue of theorem 14.5 of Billingsley [1], this Markov process is unique at the space of right-continuous sample paths, more precisely \(D[0, \infty) \) (for the precise definition see [1] or [15]).

Remark 2. We prefer to use a weak convergent version in lemma 1 in order to avoid uniform continuity requirements for \(q_{t}(i,j) \) in \(t \).

Remark 3. Note that \(q_{t}(i,i) > 0 \) is allowed. This will be utilized below.

3. Uniformization

For any \(t \geq 0 \) define the matrix \(P_t \) by

\[
P_t(i,j) = \left\{ \begin{array}{ll}
q_{t}(i,j) \beta^{-1}, & (j=1) \\
1 - \sum_{l \neq 1} q_{l}(i,j) \beta^{-1}, & (j=1)
\end{array} \right.
\]

which represents the uniformized transition probabilities at time \(t \). Now, consider a continuous-time Markov chain with transition rates \(q_{t}(i,j) = \beta P_t(i,j) \) for all \(t \) and \(i,j \) \((j=1) \) included. Then by virtue of lemma 1 with \(q_{t}(i,j) \) replaced by \(q_{t}(i,j) \) and...
(6) \[\dot{q}_t(i) = \sum_j \dot{q}_t(i,j) = \beta \sum_j p_t(i,j) - \beta \]

there exists a unique transition semigroup \(\{U_{s,t} \mid 0 \leq s \leq t < \infty \} \) satisfying (3) with \(p_s,t \) and \(q_t(i,j) \) replaced by \(U_{s,t} \) and \(q_t(i,j) \) and, by (4),

\[
\begin{align*}
U_{s,t}(i,j) &= \sum_{k=0}^{\infty} U_{s,t}^k(i,j), \\
U_{s,t}^0(i,j) &= 1_{\{i = j\}} \exp[-(t-s)\beta], \quad \text{and for } n \geq 0 \\
U_{s,t}^{n+1}(i,j) &= \int_t^\infty \exp[-(v-s)\beta] \left[\sum_m p_u(i,k) U_{v,t}(m,j) \right] dv
\end{align*}
\]

Theorem 1 For all \(0 \leq s \leq t < \infty \)

\[P_{s,t} = U_{s,t} = \sum_{k=0}^{\infty} \frac{[(t-s)\beta]^k}{k!} \int_s^t \cdots \int_s^t p_{t_1} p_{t_2} \cdots p_{t_k} d \vec{\mu}(t_1, \ldots, t_k)
\]

where \(\vec{\mu}(\ldots) \) is the density of the order statistics \(X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(k)} \) of a homogeneous distribution at \([s,t] \times \ldots \times [s,t] \subseteq \mathbb{R}^k \) and where \(P_{t_1} P_{t_2} \cdots P_{t_k} \) is the standard product matrix of transition probability matrices (5) at times \(t_1 \leq t_2 \leq \ldots \leq t_k \).

Proof First note that for \(t \leq s+h \)

\[\sum_{m=2}^{\infty} U_{s,t}^m \leq [\beta(t-s)]^2 / 2! \leq h^2 C \]

while

\[[U_{s,s+h}^1(i,j) + U_{s,s+h}^0(i,j)]h^{-1} - l_{\{i = j\}} = [1 + o(h)]h \beta [p_s(i,j) + o(1)] + [1 - h \beta + O(h^2)] l_{\{i = j\}} - l_{\{i = j\}} = h[1 + o(1)] q_s(i,j) \beta^{-1} l_{\{i = j\}} + [1 - h \beta(1 + o(1))][1 - \sum_j q_s(i,j)] \beta^{-1} l_{\{i = j\}} \]

where \(O(h)h^{-1} \to 0 \) and \(o(1) \to 0 \) as \(h \to 0 \). As a consequence, the weak convergence relation (3) of lemma 1 is satisfied if we replace \(P_{s,t} \) by \(U_{s,t} \). Lemma 1 thus proves the first equality of (8). To prove the second, by (7) and repetition we obtain for any \(k \):

\[U_{s,t}^k = \int_t^\infty \exp[-(r_1-s)] \beta p_{r_1} \left[\int_{r_1}^\infty \exp[-(r_2-r_1)\beta] \beta p_{r_2} \left[\ldots \right. \right. \right.

\[\left. \left. \left. \left. \int_{r_{k-1}}^\infty \exp[-(r_k-r_{k-1})\beta] \beta p_{r_k} \left[\int_{r_k}^\infty \exp[-(t-r_k)\beta] \right] \ldots \right] \right] \right] \right] \right] \right] dr_1 dr_2 \ldots dr_k \]
as the density of a k-dimensional distribution of the order statistics $X_1 < X_2 < \ldots < X_k$ of k independent random variables X_1, X_2, \ldots, X_k, each homogeneously distributed at $[s, t]$, is standardly known (e.g., pp. 100-103 of [7] or exercise 29, p. 240 of [12]) to be $\frac{k!}{(t-s)^k}$.

Remark 4 Note that the homogeneous case is included by $P_t - P_{t-1} - \ldots - P_t - P_{t-k} - P$, so that with the above density $\frac{k!}{(t-s)^k}$ for outcomes $t_1 \leq t_2 \leq \ldots \leq t_k$ we obtain

\begin{equation}
\int_s^t \ldots \int_s^t \frac{k!}{(t-s)^k} \frac{(t-s)^k}{k!} \int_t^s \ldots \int_t^s P_{t_1} \ldots P_{t_k} \, dt_1 \ldots \, dt_k = 1
\end{equation}

Remark 5 The Poisson expansion (8) directly provides one the error bound

\begin{equation}
||P_{s(t-\Delta t)} - P_{s,t}|| \leq \frac{\lambda^L (t-s)^L}{L!}
\end{equation}

if $P_{s(t-\Delta t)}$ is a truncated version with the sum in (8) truncated at $k=L$. Here $||.||$ denotes the standard supremum norm.

Remark 6 An approximate though efficient computation of the integrals in (8) might be established by employing (Monte Carlo) simulation as follows.

\begin{itemize}
 \item[(i)] Independently generate k random numbers $x_i \in [s, t]$.
 \item[(ii)] Determine their order statistics $t_1 = \min x_i, t_2 = \min x_i, \ldots, t_k = \max x_i$.
 \item[(iii)] Compute P_{t_1}, \ldots, P_{t_k}.
 \item[(iv)] Repeat these steps a reasonably large number of times and determine the average of the obtained individual results (matrices or weighted values).
\end{itemize}

4. Approximation

The major drawback of the above representation (as well as any other) for nonhomogeneous calculations is the fact that a continuum of transition matrices (and thus rates) is needed. To overcome this, below we investigate a finite-grid approximation under the simple Lipschitz assumption (for a relaxation see remark 7 below) that for some constant K and all t:

\begin{equation}
||Q_{t+\Delta t} - Q_t|| \leq \Delta t K
\end{equation}
where Q_t denotes the matrix of transition rates $q_t(i,j)$ with $q_t(i,i)=-q_t(i)$ while $|A| = \max_i \sum_j |a_{ij}|$ for a matrix A.

Let $h>0$ be arbitrarily chosen such that $\beta=\frac{1}{h}$ satisfies (1) and set $n_i = \lfloor t_i h^{-1} \rfloor$, $i=1,\ldots,n$ where $\lfloor x \rfloor$ denotes the entier of a number x. Then

\begin{align}
\|P_{t_1} \cdots P_{t_k} - P_{n_1 h} \cdots P_{n_k h}\| &= \\
\|P_{t_1} (P_{t_2} \cdots P_{t_k}) - P_{n_1 h} (P_{n_2 h} \cdots P_{n_k h})\| &= \\
\|P_{t_1} - P_{n_1 h}\| (P_{t_2} \cdots P_{t_k}) - P_{n_1 h} [(P_{n_2 h} \cdots P_{n_k h}) - (P_{t_2} \cdots P_{t_k})]\| &\leq \\
\|I + hQ_{t_1}\| - [I + hQ_{n_1 h}]\| + \|P_{n_1 h} - P_{t_2} \cdots P_{t_k}\| &\leq \\
\|P_{n_2 h} \cdots P_{n_k h} - P_{t_2} \cdots P_{t_k}\| + h^2 K &\leq \ldots \leq kh^2 K,
\end{align}

where the latter inequality follows by iterating these steps for t_1, t_2, \ldots, t_k.

Theorem 2 For $s=nh$ and $t=mh$ let:

\begin{align}
U_{s,t}^h = \sum_{k=0}^m \frac{1}{k!} e^{-ht-s} \beta^k \left\{ \sum_{n_1}^{m-1} \cdots \sum_{n_k}^{m-1} P_{n_1 h} \cdots P_{n_k h} \tilde{F}_{d}(n_1, \ldots, n_k) \right\}
\end{align}

where $\tilde{F}_{d}(\ldots)$ is the probability mass distribution of the order statistics $n_1 \leq n_2 \leq \cdots \leq n_k$ of k independent discrete homogeneous random variables at $\{0, 1, \ldots, m-1\}$. Then

\begin{align}
\|U_{s,t}^h - P_{s,t}\| &\leq h(t-s)K.
\end{align}

Proof Noting that

\begin{align}
\sum_{n_1}^{m-1} \cdots \sum_{n_k}^{m-1} P_{n_1 h} P_{n_2 h} \cdots P_{n_k h} \tilde{F}_{d}(t_1, \ldots, t_k) &\quad = \\
\int_s^t \int_s^t P_{n_1 h} P_{n_2 h} \cdots P_{n_k h} d\tilde{F}_{d}(t_1, \ldots, t_k) &\quad = \\
\{t_1 h^{-1}, \ldots, t_k h^{-1}\} &\quad \{a_i = \lfloor t_i h^{-1} \rfloor\}
\end{align}

while by (12): (also see (9)):
we conclude from (8), (13) and substitution of $h=\beta^{-1}$:

\begin{equation}
||\mathbf{U}_{s,t}^h - \mathbf{U}_{s,t}|| \leq hK\beta^{-1} \sum_{k=0}^{(t-s)\beta/(t-s)\beta} k! = hK(t-s).
\end{equation}

Remark 7 Clearly, the Lipschitz condition (11) is simple in form but can be too strong. In fact, following the proof we have only used that for the chosen h-grid and all $s < r < t$:

\begin{equation}
||Q_v - Q_r|| \leq hK (v \in [r, r+1]).
\end{equation}

For example, with Q_v piecewise constant at intervals $[r, r+1)$, the Lipschitz condition (11) fails, while (18) and thus (14) hold with $K=0$.

Remark 8 Result (14) can be seen as a time-inhomogeneous extension of the Euler approximation (cf. Meis and Marcowitz [9])

\[[1 + hQ]^n \to T_t \quad (n=\{th^{-1}\}) \]

for homogeneous semigroups $\{T_t | t \geq 0\}$, satisfying $d/dt T_t = QT_t = T_t Q$. As such, the probabilistic and direct proof by means of uniformization is of interest in itself.

Remark 9 In [13] an elegant method is proposed for approximating homogeneous transition probabilities of continuous-time Markov chains by inspecting the process at exponential times. This method resembles uniformization but is not the same. It turned out to be amazingly efficient. Along the lines of this section extension of this method to nonhomogeneous Markov processes seems promising.

Acknowledgement

I am grateful to professor W. Grassman for his addressing the nonhomogeneous problem during his talk at the first international workshop on numerical solutions of Markov chains, Raleigh, January 8-10, 1990, by which the research of this paper was motivated.
References

1990-1	B. Vogelvang	Testing For Co-integration with Spot Prices of Some Related Agricultural Commodities
1990-2	J.C.J.M. van den Berg P. Nijkamp	Ecologically Sustainable Economic Development: Concepts and Model Implications
1990-3	J.C.J.M. van den Berg P. Nijkamp	Ecologically Sustainable Economic Development in a Regional System: A Case Study in Agri-cultural Development Planning in the Netherlands
1990-4	C.Gorter P.Nijkamp P.Rietveld	Employers’ Recruitment Behaviour and Re-Employment Probabilities of Unemployed
1990-5	K.Burger	Off-farm income and the farm-household: the case of Kenyan smallholders
1990-6	H. Visser	Crowding out and the Government Budget
1990-7	P. Rietveld	Ordinal Data in Multiple-criteria Decision Making: A Stochastic Dominance Approach to Siteing Nuclear Power Plants
1990-8	G. van der Laan P.J.M. Reys D.J.J. Telmaas	Signaling devices for the supply of semi-public goods
1990-10	R.W. van Zijp	Neo-American Business Cycle Theory
1990-11	J.C. van Oors	Matching Unemployment and Vacancies: The Efficiency of the Dutch Labour Market
1990-12	B. Vogelvang	Hypothesis Testing Concerning Relationships between Spot Prices of Various Types of Coffee
1990-13	A.F. de Vos I.J. Styn	Stochastic Nonlinearity: A Firm Basis for the Flexible Functional Form
1990-16	E.M.A. Schooten J. Kockwijn	Pleisteringsproblematiek van starttoevoer onderzocht: een mogelijke verklaring op basis van empirisch onderzoek
1990-17	E. Hinder H.P. Smith	Saturations and Model Specification of Paasen ger ear Ownership
1990-18	F.A.G. den Butter	Social identity, de wig en economische groei
1990-20	J.P. de Groot R. Ruben	Sistemas de Producción y Transferencia de Tecnología en la Economía Cañera de Centroamérica
1990-21	R. Ruben	Campesinado y Reforma Agraria en El Salvador
1990-22	J. van Oors G. Ridders	Vacancies and the Recruitment of New Employees
1990-24	D. van der Wal	Gezondheidszorg en het Nederlandse wierookheerschepelijk
1990-25	R.J. Veldwijk M. Bogaard M.V. van Dijk E.P.K. Spoel	EDSO4: impulsion and explicatie: conceptus to automate a part of application maintenance
1990-26	B. Hansen	The area enclosed by the (oriented) Nyquist diagram and the Hilbert-Schmidt-Haskei norm of a linear system
1990-27	R.W. van Zijp	Why Lucas is not a Hayekian
1990-28	J. Rouwendal	On discrete choice under uncertainty: A generalization of the logit model and its application
1990-29	J. Rouwendal	On the equilibrial distribution of the housing stock
1990-30	J. Rouwendal	Stochastic market equilibrium with efficient rationing (with an application to the Dutch housing market)
1990-31	J.A. Vijlbrief	The effects of unemployment insurance on the labour market
1990-32	J.G.W. Simons H.F. Wiersma	Traffic Pan, a means to combat smog?
1990-33	J.C. van Ours T. Zochbou	De interne Arbeidsmarkt van de Gemeente Amsterdam
1990-34	H.J. Bierens	A Note on the Limiting Distribution of Sample Autocorrelations in the Presence of a Unit Root
1990-35	T. Kuhlman	The Economic Integration of Refugees in Developing Countries: A Research Model
1990-36	T. Kuhlman	Towards a Definition of Refugees
1990-37	T. Kuhlman	Organized versus Spontaneous Settlements of Refugees in Africa
1990-38	R. Zuidema	The Neo-American View on Interest