matoid arthritis, two congestive heart failure, and 10 nonspecific pleural effusion.

Blood and pleural fluid were collected on the same day, defibrinated, and stored for a maximum of nine months at -20 °C until assayed. The B-subunit of the CK-BB and CK-MB isoenzymes was determined with a radioimmunoassay (CK-B RIA kit; Nuclear Medical Systems, Inc., Newport Beach, CA 92663). Its concentration in plasma was considered abnormal when it exceeded 12.5 µg/L. Samples with above-normal values for CK-B were also analyzed by electrophoresis and only BB and MM fractions were found.

Thirteen of the patients with malignant disease (Figure 1) and 10 of the patients with benign disorders had measurable concentrations (≥2 µg/L) of CK-BB in pleural fluid. Abnormal concentrations in plasma were found in four patients: one with adenocarcinoma of the lung (CK-BB 15.6 µg/L), one with tuberculosis (30.0 µg/L), one with bacterial pneumonia (16.0 µg/L), and one with nonspecific pleural effusion (14.2 µg/L). Values for CK-BB in pleural fluid exceeding 12.5 µg/L were found in four patients: two with adenocarcinoma of the lung (19.0 and 59.2 µg/L), one with anaplastic carcinoma of the lung (14.0 µg/L), and one with tuberculosis (17.0 µg/L). The three patients with malignant pleural effusion and a high CK-BB concentration in pleural fluid also had a high pleural fluid/plasma CK-BB ratio (3.7 or higher). In contrast, all patients with benign disorders had a pleural fluid/plasma CK-BB ratio of 1.6 or lower. Tumor cells were found in two of the three malignant effusions with high CK-BB concentrations.

The probable source of the circulating CK-BB in cancer patients is the malignant glandular epithelium (6). The high pleural fluid/plasma CK-BB ratio observed in three of our patients with malignant pleural effusion suggests that CK-BB was produced locally by the tumor.

Our results show that the combination of a high CK-BB concentration in pleural fluid and a high pleural fluid/plasma CK-BB ratio strongly indicates that the effusion is caused by a malignant disease. This finding, however, lacks sensitivity; it was diagnostic in only 20% of patients with malignant pleural effusion.

This study was supported by grants from the Finska Läkaresällskapet and the Sigrid Jusélius Foundation.

References

Tom Pettersson
Theodor H. Weber
Kaarina Ojala

Clin. Lab. Aurora Hospital
SF-00250 Helsinki 25
Finland
and
Dept. of Pulmonary Diseases
Mjöbolsta Hospital
Finland

Errors in Determination of Fatty Acid Composition of Cholesterol Esters after Extraction from Serum with n-Octane

To the Editor:

The fatty acid composition of serum cholesterol esters reflects the composition of dietary fat (1, 2) and such data are a useful tool for estimating the dietary fatty acid composition in groups of free-living subjects.

Rockerbie et al. (3) recently described a rapid assay for determining the cholesterol ester fatty acid composition by using extraction with n-octane instead of the time-consuming method involving thin-layer chromatography to separate cholesterol esters from other lipids in serum.

We have now re-investigated this method and found that fatty acids from serum triglycerides (triaclyglycerols) are included with the cholesterol ester fatty acids in the Rockerbie method. This method is a modification of the procedure described by Peter and Reynolds (4), in which n-octane is used to extract the cholesterol esters from an alkaline aqueous isopropanol mixture. Peter and Reynolds did report that the cholesterol esters extracted from serum by their method were contaminated with an "insignificant" amount of triglyceride.

To investigate the problem, we carried out two experiments. In Experiment 1, the fatty acids in a pooled sample of fresh serum from normolipaemic donors were analyzed by the method of Rockerbie et al. (3) except that the fatty acid methyl esters were separated by gas-liquid chromatography as described earlier (5). If n-octane contained substances that interfered with the subsequent chromatographic analysis, it was purified before use. In addition, the lipids of the pooled sample of serum were extracted by the method of Folch et al. (6) and then separated by chromatography on thin layers (0.5 mm) of Silica Gel H (E. Merck, Darmstadt, F.R.G.), with petroleum ether (b.p. 40–60 °C)/diethyl ether/glacial acetic acid (160/30/5 by vol) as solvent. Rhodamine 6G was incorporated in the gel layer, to make visible the components of the mixture under ultraviolet light. The area of silica gel corresponding to cholesterol esters was scraped off the plate and, after extraction with chloroform, the cholesterol esters were hydrolyzed and the fatty acids methylated and analyzed as described above. The results of the fatty acid analyses are presented in Table 1. It is apparent from this table that, with the Rockerbie method, the proportion of the C16:0, C18:0, and C18:1 fatty acids is higher and that of C18:2 is lower. This suggested to us that the fraction containing the cholesterol esters was contaminated with triglyceride.

To test this hypothesis, we carried out
Table 1. Fatty Acid Composition of the Fraction Containing the Cholesteryl Esters from Serum, When Isolated by Folch Extraction Followed by Thin-Layer Chromatography or by the Method of Rockerbie et al. (Experiment 1)

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Folch/TLC method (and SD)</th>
<th>Rockerbie method</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14:0</td>
<td>0.7 (0.18)</td>
<td>0.7 (0.19)</td>
</tr>
<tr>
<td>C16:0</td>
<td>11.3 (0.53)</td>
<td>13.4 (0.62)</td>
</tr>
<tr>
<td>C18:1</td>
<td>3.9 (0.24)</td>
<td>3.7 (0.24)</td>
</tr>
<tr>
<td>C18:0</td>
<td>1.2 (0.12)</td>
<td>2.5 (0.15)</td>
</tr>
<tr>
<td>C18:1</td>
<td>19.6 (0.55)</td>
<td>21.4 (0.39)</td>
</tr>
<tr>
<td>C18:2</td>
<td>58.0 (0.92)</td>
<td>53.1 (0.89)</td>
</tr>
<tr>
<td>C20:1</td>
<td>5.6 (0.50)</td>
<td>5.3 (0.35)</td>
</tr>
</tbody>
</table>

* Calculated as a proportion of the sum of the fatty acids listed. b Comparisons of Student’s t-test with the Folch/TLC method: p < 0.001.

Experiment 2 to establish the effect of the triglyceride concentration on the composition of the fatty acids of the cholesteryl esters, using the Rockerbie technique. Six different samples of fresh serum with different triglyceride concentrations were analyzed by the methods described above and from the results (Figure 1) it can be clearly seen that the errors associated with the fatty acid analysis of the cholesteryl ester fraction increase with increasing concentrations of triglyceride in the serum.

The ratios for C16:0 were almost identical to those observed for C18:1. The fraction containing the cholesteryl esters isolated in the Rockerbie method from three of the serum samples with different triglyceride concentrations were separated by chromatography on thin layers of Silica Gel H as described above, except that Rhodamine 6G was not incorporated in the gel layer. The different lipid bands on the plate were then made visible by spraying with aqueous sulfuric acid (100 mL/L) and heating for 15 min at 200 °C (7) (Figure 2).

Contamination of the fraction containing the cholesteryl esters is also clearly seen in Figure 2. The cholesteryl esters (Rf = 0.62) are not only contaminated with triglyceride (Rf = 0.48) but also with material with an Rf of 0.68. The extent of the contamination increases with the triglyceride concentration. Free cholesteryl (Rf = 0.18) is also present, but this would not interfere with the fatty acid analysis of the cholesteryl esters.

To characterize the material with an Rf of 0.68, we repeated the extraction and chromatography procedure with the pooled serum sample used in Experiment 1. The area of the plate corresponding to the material with an Rf of 0.68 was scraped from the plate, eluted with chloroform, and analyzed by mass spectrometry. The results obtained are consistent with the material being a mixture of isopropyl esters of fatty acids.

Thus it would appear that esterification or transesterification with isopropanol occurs during the initial extraction procedure or in the subsequent removal of solvent, which would contain traces of isopropanol dissolved in the octane. The fatty acid composition of the isopropyl esters (C16:0, 1.0%; C18:0, 28.6%; C18:1, 2.2%; C18:2, 9.9%; C18:1, 41.5%; C18:2, 14.8%; and C20:1, 2.0%) would suggest that the fatty acids were more likely to be derived from the triglyceride or free fatty acid fraction of the serum lipids rather than the cholesteryl esters. Triglycerides and free fatty acids contain more C18:0 and less C18:2 than do cholesteryl esters (2). It is also possible that a particular class (or classes) of phospholipids or sphingolipids contributes to the isopropyl ester fraction.

Our results suggest that contamination of the cholesteryl ester fraction extracted by the method of Rockerbie et al. can be attributed to contamination with both triglyceride and isopropyl esters possibly also largely derived from triglyceride. The error associated with the method is more pronounced when sera with high concentrations of triglyceride are analyzed. Value reported by this method—e.g., by ourselves (5)—should be modified. The proportions of palmitic acid (C16:0) found in the cholesteryl esters should be decreased and that of linoleic acid (C18:2) should be increased, and the extent of the correction would depend on the concentration of triglyceride. However, the method can still be usefully used to compare groups of people with similar concentrations of triglycerider but different cholesteryl ester fatty acid patterns in their serum.

This work was supported by the Netherlands Heart Foundation. We thank Dr. M. A. Posthumus, Department of Organic Chemistry, Agricultural University, for carrying out the mass spectrometry, and Mr. V. van Baaren for the photographic work.

References

E. A. M. Koot-Gronsveld
F. J. M. Schouten
J. T. Knuiman
C. E. West
M. B. Katan

Dept. of Human Nutrition
Agricultural University
De Driejen 12, 6703 BC Wageningen
The Netherlands
(Address correspondence to J. T. K.)