Effects of fats and fatty acids on blood lipids in humans: an overview

Martijn B Katan, Peter L Zock, and Ronald P Mensink

ABSTRACT Differences in dietary fatty acid structure induce marked differences in lipid and lipoprotein concentrations in plasma from fasting subjects. Under metabolic-ward conditions, replacement of carbohydrates by lauric, myristic, and palmitic acids raise both low-density-lipoprotein (LDL) and high-density-lipoprotein (HDL) cholesterol whereas stearic acid has little effect. Oleic and linoleic acids raise HDL and slightly lower LDL; all fatty acids lower fasting triglycerides when substituted for carbohydrates. *Trans* monounsaturates lower LDL and raise HDL and lipoprotein(a). The fatty acids in unhydrogenated fish oil potently lower triglycerides, with variable effects on LDL. Of the commercial fats, palm-kernel and coconut oil are the most hypercholesterolemic, followed by butter and palm oil. Replacement of hard fats rich in lauric, myristic, or palmitic acids or *trans* fatty acids by unsaturated oils will lower LDL, but replacement by carbohydrates will in addition decrease HDL and increase triglycerides. In free-living subjects, high-oil diets could lead to obesity, undoing the favorable effects on HDL and triglycerides. *Am J Clin Nutr* 1994;60(suppl):1017S–22S.

KEY WORDS Dietary fatty acids, serum cholesterol, serum HDL, serum triglycerides, dietary carbohydrates.

Introduction

Dietary triglycerides may differ from each other in many aspects: the chain lengths of their constituent fatty acids, the number and position of double bonds, the geometry (*cis* or *trans*) of these double bonds, and the distribution of fatty acids over the three possible attachment sites on the glycerol molecule. Plasma lipid concentrations from fasting subjects are quite susceptible to the nature and amount of dietary lipid (1, 2). This may be contrasted with the concentration of plasma lipids, which remains constant over a wide range of protein intakes; also, people eating high- or low-carbohydrate diets have roughly similar fasting blood sugar concentrations as long as their body mass index and physical activity level are comparable.

Although the mechanisms through which dietary fats affect serum lipoprotein concentrations are still in the process of being clarified (3, 4), there are sufficient empirical data to allow us to predict how plasma lipid and lipoproteins in humans will change when the amount and quality of fat in the diet are changed. This paper reviews the effects of various fatty acids and food fats on blood lipids and lipoproteins.
TABLE 1
Daily intake of the major dietary fatty acids in middle-aged men in four countries.

<table>
<thead>
<tr>
<th>Intake</th>
<th>Finland</th>
<th>Netherlands</th>
<th>United States</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated fatty acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauric acid (12:0)</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Myristic acid (14:0)</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>0.9</td>
</tr>
<tr>
<td>Palmitic acid (16:0)</td>
<td>38</td>
<td>30</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>Stearic acid (18:0)</td>
<td>20</td>
<td>15</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Monounsaturated fatty acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleic acid (18:1n-9)</td>
<td>40</td>
<td>29</td>
<td>37</td>
<td>10</td>
</tr>
<tr>
<td>Trans 16:1 and 18:1*</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>Polyunsaturated fatty acids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linoleic acid (18:2n-6)</td>
<td>8</td>
<td>12</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>n-Linolenic acid (18:3n-3)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>EPA (20:5n-3)</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>DHA (22:6n-3)</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

*Duplicates of the diets reported in the early 1960s by men participating in the Seven Countries Study (5) were collected retrospectively in 1987 and chemically analyzed (D Kromhout, unpublished observations, 1994). EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

**D Kromhout, unpublished measurements. Data on Finland and Japan are each means of two regions.

*Does not include trans isomers with chain lengths of 20 and 22 carbon atoms as found in hydrogenated fish oils.

The effects of low-density lipoprotein (LDL) are markedly different, with saturates raising LDL and (n-6) polyunsaturates (ie, linoleic acid) slightly lowering it. As a result, oils high in linoleic acid produce the highest ratio of HDL to LDL but the difference with monounsaturated oils (oils rich in oleic acid) is relatively small.

Epidemiologic evidence

Data from metabolic-ward studies lasting several weeks should ideally be consistent with observations on free-living subjects who have been eating their customary diets for a long time period. Comparisons of individuals within one population are handicapped by the problem of reliably estimating small differences in true long-term fatty acid intakes between individuals. Still, most published studies do report correlations in the same direction as seen in controlled trials [eg, (6); for a review see Berns et al (7)]. Specifically, the HDL-lowering effect of high-carbohydrate diets is seen quite regularly when comparing individuals within affluent populations [(8–10); for a review see (12)].

Comparisons of population means offer the advantage of large, stable differences in intake but the disadvantage of confounding by other lifestyle factors that accompany differences in dietary fat consumption. Keys et al (13) selected 16 cohorts of ≤ 1000 men, from seven countries, with large differences in cholesterol concentrations. They found that the differences in mean cohort cholesterol concentration could be predicted from the men’s diets and that differences in coronary heart disease rates agreed with contrasts in diet and in cholesterol concentrations. However, the absolute extent of differences in cholesterol associated with differences in diet was much larger in the Seven Countries Study (14) than those seen in controlled metabolic-ward studies (2). Evidently other factors or long-term effects of diet played an additional role in shaping cholesterol concentrations.

The effects of dietary fats vs carbohydrates on HDL and triglyceride concentrations seen in controlled trials have also been confirmed by epidemiologic studies of population means (10, 15). In children, high-carbohydrate diets are associated not only with lower LDL but also with lower HDL concentrations than are high-fat diets (10, 16). In adults the effects on HDL, and presumably also on triglycerides, are attenuated by the higher body fatness associated with affluent diets and lifestyles (10, 16).
Weight gain and obesity

In metabolic ward studies in which body weight is forcibly kept constant, diets rich in oils produce more favorable plasma lipoprotein profiles than do high-carbohydrate, low-fat diets. In clinical practice, however, allowing patients the unrestrained consumption of dietary oils entails a risk of energy overconsumption and weight gain, which would reverse the beneficial effects of high-oil diets on HDL and triglycerides. Obesity will also increase blood pressure and diabetes risk. In population comparisons, high-fat diets and obesity often go hand in hand. However, such associations do not prove causality, and differences in activity could be an important confounder. Controlled trials of fat-restricted diets have produced only modest losses in body weight (17), and long-term effects are uncertain.

Particular fatty acids

Most publications on the effects of fats on plasma lipids and lipoproteins have not reported the intakes of individual dietary fatty acids. However, interest in and information on particular fatty acids is now rapidly accumulating. Various fatty acids of interest are discussed below, and recent findings on individual fatty acids are summarized in Figure 3.

Lauric, myristic, and palmitic acids

The major saturated fatty acids in most human diets are palmitic acid (16:0) followed by stearic, myristic, and lauric acids (Table 1). In mixed diets, lauric, myristic, and palmitic acids combined usually are 60–70% of all saturates, and they are the fatty acids responsible for the cholesterol-raising effect of saturates. Their relative cholesterol-raising potential has been controversial (2, 18, 24–29). Some investigators reported that palm oil, which is rich in palmitic acid, causes remarkably lower cholesterol concentrations than does coconut oil, which is rich in lauric and myristic acid (26, 27, 29). Ng et al (28) therefore suggested that myristic acid is the major contributor to the cholesterol-raising effect of saturated fatty acids and that palmitic acid may be neutral, just like stearic and oleic acid. This is, however, contradicted by the results of many well-controlled studies in which palmitic acid was shown to raise LDL cholesterol relative to oleic acid (18–21, 30). It thus appears that palmitic acid from palm oil is indeed a cholesterol-raising saturated fatty acid.

The effect of lauric acid (12:0) was reevaluated recently. Denke and Grundy (18) found that the cholesterol-raising potential of dietary lauric acid was about two-thirds that of palmitic acid, whereas Temme et al (31) concluded that a diet rich in lauric acid caused higher HDL-, LDL-, and total cholesterol concentrations than did a diet rich in palmitic acid.

Myristic acid has long been suspected of being the most cholesterol-raising of all fatty acids. Hegsted et al (24), who pioneered this field, drew this conclusion from a multiple-regression analysis of a series of controlled trials; our recent meta-analysis (2) also suggested that myristic acid may be four to six times more cholesterol-raising than palmitic acid is. However, in edible fats, high concentrations of myristic acid are invariably associated with high concentrations of either lauric acid, such as in coconut oil, or palmitic acid, such as in butter. These associations may invalidate multiple-regression analyses through collinearity, which causes spuriously high or low regression coefficients.

McGandy et al (25) studied the effect of myristic acid directly by using specifically synthesized fats but did not reach a conclusion. Recently we fed a special fat rich in myristic acid to a large number of volunteers in a well-controlled trial (19). We found that myristic acid is about 1.5 times as cholesterol-raising as palmitic acid, which is much less than the factor of four to six suggested by meta-analysis (2, 24). In addition, half of the effect of myristic acid on cholesterol was due to HDL.

These data suggest that there may be differences in the cholesterol-raising potential among lauric, myristic, and palmitic acids but that these differences are modest; all three clearly raise LDL cholesterol compared with unsaturated fatty acids.

Stearic acid

The studies of Ahrens et al (32), Keys et al (33), and Hegsted et al (24) as well as more recent studies (21, 22, 34) showed that the effect of stearic acid on total cholesterol is much less than that of lauric, myristic, and palmitic acids and more closely approximates the effect of oleic acid. The more recent trials also reported a modest decrease in HDL for stearic acid relative to unsaturates (21, 22, 34). Thus, stearic and oleic acids have similar effects on total and LDL cholesterol, but they might not be completely equivalent regarding HDL.

Trans fatty acids

Trans and cis isomers of oleic acid (Fig 4) are produced during the hydrogenation of linoleic and a-linolenic acid, either in the rumen of the cow or in oil-hardening factories. Such trans fatty acids have effects on serum lipoproteins markedly different from those of their natural cis isomer, oleic acid. Trans fatty acids raise LDL concentrations and, less consistently, decrease plasma HDL concentrations (22, 23, 35, 36). In some (35, 37) but not all (36) studies they also raised the plasma concentrations of lipoprotein(a), an atherogenic lipoprotein (38) that was hitherto thought to be impervious to dietary effects. Thus the overall effect of

![FIG 3. Effects of individual dietary fatty acids on serum total (□) and LDL (■) and HDL (■) cholesterol when 1% of energy from carbohydrates in the diet is replaced by 1% of energy from the fatty acid in question. The values for lauric acid (12:0) are based on reference 18; myristic acid (14:0) on reference 19; palmitic acid (16:0) on references 18–21; stearic acid (18:0) on references 21 and 22; and monounsaturated trans-fatty acids (18:1-trans) on references 22 and 23. Data for oleic acid (18:1-cis) and linoleic acid (18:2) are based on regression coefficients derived from a meta-analysis of 27 trials (2). These latter values were also used to calculate the effects of the fatty acids observed in each trial relative to carbohydrates. Figure reproduced from reference 19 with permission (copyright 1994, American Heart Association).](https://www.ajcn.org/content/67/4_suppl/1019S/Fig3.jpg)
trans 18:1 fatty acids on plasma lipoproteins is unfavorable. However, many people eat no more than a few grams of trans fatty acids per day and such quantities have only modest effects on lipoprotein concentrations.

In addition to partially hydrogenated vegetable oils, partially hydrogenated fish oils are an important source of trans fatty acids in the Netherlands, Norway, the United Kingdom, and South Africa. Such hardened fish oils contain mainly trans isomers with a chain length of 20 or 22 rather than 18 carbon atoms. Their effects on lipoproteins in humans have not been studied in depth and could conceivably be quite different from those of elaidic acid (trans 18:1–9Δ) and its isomers.

Eicosapentaenoic acid and docosahexaenoic acid

Eicosapentaenoic acid (EPA; 20:5n–3, n–6, n–9, n–12, n–15) and docosahexaenoic acid (DHA; 22:6n–3, n–6, n–9, n–12, n–15, n–18) typically occur in fatty fish and unhydrogenated fish oil. The effects of these very-long-chain (n–3) polyunsaturates on LDL concentrations are controversial. Some studies find LDL to be lowered but several other studies show that fish oils raise LDL and apoprotein B (39–43), and similar results were reported for fatty fish (44). Fish oil and fatty fish do, however, have a favorable effect on serum triglycerides and very-low-density lipoprotein (VLDL), which are lowered by intakes of only a few grams of fish oil per day. Whether this effect is responsible for the lower incidence of coronary heart disease that has been seen in fish-eating people in epidemiologic studies (45) remains unclear; fish oils can also modulate many other physiological processes, including blood platelet function. A report that fish oil lowers lipoprotein(a) (46) has not been confirmed.

Predicted effects of individual fats and oils on plasma lipids

We applied the predictive formulas (2) described above (Fig 1) to rank commercially available oils by their effect on plasma lipids and lipoproteins. As a reference diet we chose one that provided 9600 kJ/d (2300 kcal/d), 100 g fat/d (41 g saturated, 38.5 g monounsaturated, and 17.3 g polyunsaturated fatty acids), and 290 mg cholesterol/d (of which 150 mg was associated with animal fats and another 140 mg was provided by foods such as eggs and lean meat). These values are close to the average intakes of the 5898 subjects in the Dutch National Nutrition Surveillance (47). Similar intakes were reported in other affluent Western populations (48, 49) and the diet in developing populations is moving in the same direction. We calculated the predicted average changes in the plasma lipoproteins of healthy Dutch men when all 100 g fat in this diet plus its associated 150 mg cholesterol were to be replaced by a particular fat. Such total replacement is of course not a realistic situation, but it elucidates the calculations; the effects of more realistic degrees of replacement can be easily derived from those of total replacement because effects of fats on serum lipids and lipoproteins appear to be roughly linear with dose (2).

The effects of saturated, monounsaturated, and polyunsaturated fatty acids were calculated with the equations of Mensink and Katan (2) and the effect of dietary cholesterol on total plasma cholesterol was calculated with the Keys equation (33); values for the composition of fats were derived from the US food table (50). The equations of Mensink and Katan (2) used total saturates as the dietary variable because not enough information was available on the amounts of lauric, myristic, and palmitic acids fed in the various trials. In mixed diets such as used in the studies on which the equations were based (2), the sum of the cholesterol-raising fatty acids lauric, myristic, and palmitic acids usually is 0.67 times the sum of all saturated fatty acids. In contrast, for individual fats and oils this ratio can range from 0.43 for cocoa butter to 0.91 for palm and cottonseed oil; as a result, using total saturates would give incorrect predictions for the effects of individual fats and oils on plasma cholesterol. In calculating effects of individual fats and oils on lipoprotein concentrations we there-

Table 2

Predicted effect on serum lipids when 100 g of a particular fat replaces all the fat plus fat-associated cholesterol (150 mg) in an average Dutch diet.

<table>
<thead>
<tr>
<th>Fat Type</th>
<th>ΔHDL</th>
<th>ΔLDL</th>
<th>ΔTC</th>
<th>ΔTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palm-kernel oil</td>
<td>0.1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Coconut oil</td>
<td>0.1</td>
<td>0.9</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Butter oil</td>
<td>0.0</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Palm oil</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Menhaden oil</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Beef tallow</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Average Dutch diet</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mutton tallow</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Cocoa butter</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Chicken fat</td>
<td>0.0</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Cottonseed oil</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Olive oil</td>
<td>0.0</td>
<td>-0.5</td>
<td>-0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Corn oil</td>
<td>-0.1</td>
<td>-0.7</td>
<td>-0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>-0.1</td>
<td>-0.6</td>
<td>-0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Rapsed oil, no. 22:1</td>
<td>-0.1</td>
<td>-0.7</td>
<td>-0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Sunflower, >60% 18:2</td>
<td>-0.1</td>
<td>-0.7</td>
<td>-0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Safflower, >70% 18:2</td>
<td>-0.1</td>
<td>-0.8</td>
<td>-0.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

1 Only lauric, myristic, and palmitic acids were counted as cholesterol raising (see legend to Fig 5). TC, total cholesterol; TG, triglyceride.

2 Fish oils cause a marked lowering of triglycerides, but in the absence of meta-analytical data no figure is given.
of individual fats and oils on lipoprotein concentrations we therefore replaced total saturates derived from USDA handbook 8-4 (50).

There are no equations for the separate effects of dietary cholesterol on HDL-, LDL-, and VLDL-cholesterol concentrations. However, most authors agree that dietary cholesterol raises both HDL and LDL cholesterol, with the bulk of the change being due to LDL. We therefore assigned 75% of the effect of dietary cholesterol on serum cholesterol to LDL and the remaining 25% to HDL. This division is somewhat arbitrary, but the ranking of fats and oils by their effects on LDL was not very sensitive to the partitioning of the effect of dietary cholesterol over HDL and LDL.

Table 2 and Figure 5 depict the predicted changes in plasma total cholesterol when all the fat plus its associated 150 mg cholesterol in the average Dutch diet is replaced by a particular fat or oil. The reference diet is similar to the average diet reported by 5988 Dutch men and women aged 1–74 y in the Dutch National Nutrition Surveillance 1987/1988 (47). The average diet provides 100 g fat/d, 300 mg cholesterol/d, and 9600 kJ/d (2300 kcal/d). It was postulated that 150 mg cholesterol was provided by fats and is thus removed when fat is replaced, and 140 mg is provided by eggs, lean meats, etc. and is not removable. The effects of fatty acids were calculated from the equations of Mensink and Katan (2), modified to take into account that only lauric, myristic, and palmitic acids raise cholesterol whereas other saturated fatty acids do not. Therefore, saturated fatty acids were replaced by 1.5 x (c-12 + c-14 + c-16 fatty acids). The effect of dietary cholesterol on serum cholesterol was calculated by using the Keys equation (51). To calculate the effect of dietary cholesterol on separate lipoproteins, 75% of the total effect was assigned to LDL and 25% to HDL. Compositions of fats were derived from USDA handbook 8-4 (50).

Conclusion

As far as the effects of fatty acids on total cholesterol are concerned, the equations of Keys et al (33) and Hegsted et al (24) have stood the test of time. Recent studies find a somewhat smaller effect of polyunsaturates, but overall the consistency of the results obtained in the 1950s and 1960s with those obtained more recently is gratifying and reassuring (2). The major new development is the effect of fatty acids vs carbohydrates on HDL. It is now clear that low-fat, high-carbohydrate diets cause not only lower LDL but also lower HDL concentrations. In clinical practice this effect may be compensated for by a loss of body fat in patients on low-fat diets, but this remains to be established. Also remaining to be established is whether lowering HDL concentrations will increase the risk of cardiovascular disease; a causal link is plausible but not yet proven.

We are grateful to the staff of the Department of Human Nutrition for support and advice in performing dietary trials and to Margo Denke for drawing our attention to the effects of individual fats and oils.

References

15. West CE, Sullivan DR, Katan MB, Halferkamps IL, Van der Torre HW. Boys from populations with high carbohydrate intake have higher fasting triglycerides than boys from populations with high fat intake. Am J Epidemiol 1990;131:271–82.

