Hexadecapole interacting boson approximation structure functions in neodymium isotopes

(1)Università di Lecce and Sezione Istituto Nazionale di Fisica Nucleare di Lecce, I-73100 Lecce, Italy
(2)Dipartimento di Fisica dell’Università di Milano, Milano, Italy
and Sezione Istituto Nazionale di Fisica Nucleare di Milano I-20133 Milano, Italy
(3)Kernfysisch Versneller Instituut, 9747 AA Groningen, The Netherlands
(4)Dipartimento di Fisica dell’Università di Bari, I-70100 Bari, Italy,
and Sezione Istituto Nazionale di Fisica Nucleare di Lecce, I-73100 Lecce, Italy
(5)Faculteit Natuurkunde en Sterrenkunde, Vrije Universiteit, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
(6)Nationale Instituut voor Kernfysica en Hoge-Energie-Fysica, Sectie K, P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

(Received 23 December 1992)

Low-lying hexadecapole states in stable even-even neodymium isotopes have been investigated by means of inelastic electron scattering. Transition charge densities were extracted in a Fourier-Bessel analysis of the form factors. The analysis of the experimental results within the interacting sdg-boson model with only one g boson allowed the extraction of the radial shapes of the hexadecapole structure functions of three of the different boson-pair configurations (i.e., dd, sg, and dg) involved in the hexadecapole excitations.

PACS number(s): 21.10.Re, 21.60.Ev, 25.30.Dh, 27.60.+j

The structure of nuclear excited states can be investigated [1,2] by studying the radial shape of the transition charge density, which can be obtained from high-resolution inelastic electron scattering. Recently, the interpretation of the transition charge densities of two vibrational nuclei 110Pd and 110Cd [3] in the framework of the classic sd-interacting boson model (IBM) expanded with only one g boson has allowed the deduction of the structure functions of the main configurations involved in the excitation of the low-lying hexadecapole states. The function $\alpha_{gs}^{2s}(r)$, related to a recoupling of two d bosons, was found to be very similar in shape to the second derivative (δ'') of the ground-state (g.s.) charge density. This is in agreement with collective models, which predict such a shape for two-phonon configurations. The dd configuration constitutes, in vibrational nuclei, the main component in the wave function of the 4^+_1 level, which belongs to the well-known two-quadrupole-phonon triplet. In the sd-IBM it is, of course, the only one allowed. The functions $\alpha_{gs}^{2s}(r)$ and $\alpha_{dg}^{2s}(r)$, related to the exchange of one s or d boson with one g boson, were instead found to be similar to the first derivative (δ') of the g.s. density, the shape predicted by collective models for one-phonon configurations. These configurations constitute the main components of higher 4^+ states, but can also influence the 4^+_1 wave function if a mixing among the different configurations is introduced in the Hamiltonian of the model. The sg, dg, and the second-order gg terms are the extra boson-pair configurations introduced in the IBM model when the hexadecapole degree of freedom, namely, the g boson, is added explicitly to the sd expansion.

The aim of this Rapid Communication is to extend the investigation of the radial shapes of the sdg-IBM hexadecapole structure functions to transitional nuclei. The even-even Nd isotopes constitute a good test case for such an investigation, since two transitions are involved in this chain: a spherical-collective one and a vibrational-rotational one going, respectively, from $A = 142$ to $A = 146$ and from $A = 146$ to $A = 150$.

The transition charge densities in 144,146,148,150Nd have been derived from the data of high-energy inelastic electron-scattering experiments performed at NIKHEF-K using the quadrupole-dipole-dipole magnetic spectrometer [4]. Results from these experiments on 144,146,150Nd have been published elsewhere [5–7]. The effective transferred momentum in the experiments ranged from 0.5 to 2.8 fm$^{-1}$. Isotopically enriched targets of approximately 10 mg/cm2 were used. An energy resolution of about 12 keV was achieved at the lowest incident electron energy (112 MeV), and of up to about 30 keV at the highest energy (450 MeV). The identification of the excited states observed was checked against the results of a recent investigation [8] of these nuclei performed with inelastic scattering of protons and deuterons. The transition charge densities were deduced through a Fourier-Bessel analysis of the cross sections, as detailed in Ref. [6]. The analysis accounted for the finite q range through a high-q constraint.

The values of the reduced transition probability, $B(E4)$, related to the transition charge density, $p_A(r)$, are shown versus the excitation energy in Fig. 1 as full circles. The isoscalar components of the same quantities evaluated from the inelastic scattering of protons and deuterons in Ref. [8] are also indicated in Fig. 1 by full squares. Because of the better resolution achieved in Ref. [8] many weak hexadecapole transitions could also be observed in that experiment. Figure 1 suggests that the strongest excitations have been observed in each nucleus in the present electron-scattering experiment and, furthermore, that the isovector component in the excitation of levels observed in both experiments is small. This last observation justifies the use of the isoscalar version.
(IBA-1) of the IBA model. In order to simulate the fragmentation and spreading at higher excitation energies, data and theoretical predictions have been folded with a Gaussian of 200 keV width (full and dashed curves in Fig. 1, respectively).

The gross structure of the data in Fig. 1 can be nicely reproduced by the sdg approximation of the IBA model [9] with only one g boson added. In this case the Hamiltonian can be written as the sum of the sd part, the g one, and an interaction (sd-g) between these:

\[H_{sdg} = H_{sd} + \varepsilon_{g}(g \leftrightarrow g) + \xi((g \leftrightarrow g) + (g \leftrightarrow g)) \]

For the sd Hamiltonian, its multipole expansion [9] has been used. The g boson energy is denoted by \(\varepsilon_{g} \). The last term in Eq. (1) is the leading term [3] of a more complete \(g \)-boson Hamiltonian [10].

The electromagnetic transition operators are given by the extension of the usual sd operators [9]:

\[\hat{\mathcal{O}} = (s \rightarrow d + d \rightarrow g) + \chi_{dd}(d \rightarrow d + d \rightarrow g) + \chi_{gg}(g \rightarrow g + g \rightarrow g) + \chi_{gg}(g \rightarrow g + g \rightarrow g) \]

In addition to the sd approximation, Eqs. (2) and (3) include the new sg, dg, and gg modes introduced by the g boson to form \(L = 2 \) and 4 angular momenta. The multipole moments are related to the reduced transition probabilities through the usual polarization charges:

\[B(E2, s \rightarrow g) \equiv |\varepsilon_{g}(s \rightarrow g)\xi_{g}|^{2}, \quad B(E4, s \rightarrow g) \equiv |\varepsilon_{g}(s \rightarrow g)\xi_{g}|^{2}. \]

In the previous equations the parameters introduced with the g boson act in the following way: \(\varepsilon_{g} \) shifts the excitation energies of the 4+ states belonging to the sg, dg, and gg configurations with respect to the dd ones; the parameter \(\xi \) influences only slightly the position of the levels, but causes a mixing of the pure sd and g configurations and, at large values, the splitting of the pure (degenerate) g configurations. The \(\chi_{dd}, \chi_{gg}, \chi_{gg}, \chi_{gg}, \chi_{gg}, \) and \(\chi_{gg} \) polarization charges normalize the strength of the different states, but do not influence the sequence of excited levels.

Calculations have been performed in the sdg-IBA model with an existing set of sd-IBA-1 parameters [11] for the Nd isotopes to which the new parameters \(\varepsilon_{g} \) and \(\xi \) given in Table I have been added. In Ref. [11], the sd parameters were evaluated only for the three heaviest even-A Nd isotopes. For \(^{154}\text{Nd}\) we have fitted the sd parameters by reproducing the excitation energies and strengths of the lowest states. The quadrupole strength evaluated with the sd approximation is not significantly altered by the addition of one g boson. In this paper we concentrate on the hexadecapole case which displays a richer strength distribution in the g-boson expansion. Most of this strength is concentrated in a few levels (dashed vertical lines in Fig. 1), each of which has a dominant boson-pair configuration, i.e., the dd, sg, dg, and gg ones labeled on the top of the dashed curves in Fig. 1.

The resulting parameters display a rather smooth dependence [12] on the product of the neutron and proton boson numbers. Here two remarks are in order.

TABLE I. IBA parameters used in the codes PHTNL and FBEML [9] for the sdg-analyses described in the text. The parameter CHQ has an SU(3) limiting value of \(-\sqrt{15} \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Isotope</th>
<th>144</th>
<th>146</th>
<th>148</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_{g}) (keV)</td>
<td>816</td>
<td>743</td>
<td>605</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_{g}) (keV)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_{g}) (keV)</td>
<td>0.0</td>
<td>1.9</td>
<td>1.0</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_{g}) (keV)</td>
<td>1.2</td>
<td>71.4</td>
<td>53.6</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_{g}) (keV)</td>
<td>2.2</td>
<td>0.5</td>
<td>0.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon_{g}) (keV)</td>
<td>1.1</td>
<td>1.34</td>
<td>2.24</td>
<td>2.46</td>
<td></td>
</tr>
<tr>
<td>(\xi) (keV)</td>
<td>1950</td>
<td>1650</td>
<td>1530</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>(\xi) (keV)</td>
<td>300</td>
<td>300</td>
<td>100</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(\xi) (keV)</td>
<td>0.18</td>
<td>0.13</td>
<td>0.09</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>(\chi_{dd}) (v)</td>
<td>0.09</td>
<td>0.17</td>
<td>0.30</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>(\chi_{gg}) (v)</td>
<td>0.66</td>
<td>0.94</td>
<td>1.02</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>(\chi_{gg}) (v)</td>
<td>26.7</td>
<td>30.1</td>
<td>43.4</td>
<td>210.</td>
<td></td>
</tr>
</tbody>
</table>
Firstly, the use of only one g boson can be justified by the results of Ref. [13] where it was concluded that in the ground state of 150Nd the probability of a g boson is 10% at most, and that the reproduction of the multipole strength is obtained by a Hamiltonian intermediate between the SU(3) sd and the SU(3) sdg approximations. Secondly, the ratio c_{g}/c_{d} (Table I) of the energies of the g and d bosons increases with isotope mass indicating an increasing collectivity for the quadrupole degree of freedom. This further results in a weaker interaction between the sd and g bosons, reflected in the strong decrease of ξ observed in the present work.

The parameters for the transition operator \hat{H} [Eq. (3)] were chosen on the basis of the following considerations. As discussed in Ref. [13], simple microscopic evaluations give values close to 1 for the parameters $\chi_{gg}^{(4)}$, $\chi_{dg}^{(4)}$, and $\chi_{gg}^{(4)}$. In the present analysis values of this order were found for $\chi_{dg}^{(4)}$, but the experiment clearly requires smaller $\chi_{gg}^{(4)}$ values. Very large $\chi_{gg}^{(4)}$ values are required to describe the experimental strength. Such a large $\chi_{gg}^{(4)}$ value could be due to a too limited model space, which may possibly still point to the need for more g bosons. In this case the contribution of the gg configuration in Fig. 1 is overestimated and therefore it is not reliably evaluated in the present analysis. However, it is clear from Fig. 1 that the hexadecapole strength of the other configurations is reasonably reproduced in an excitation energy with an upper limit of 3.0 MeV in 144Nd and decreasing to an upper limit of 1.7 MeV for 150Nd.

The extracted hexadecapole transition charge densities for the strongest transitions are shown in the first four columns of Fig. 2 with full points. The densities belonging to the same isotope are displayed in columns. The densities in general show roughly a δ shape with no clear evidence for a δ'' shape. However, the densities peak at different radial distances: those in the first row generally peak 0.5 fm more outwards. Moreover, some of the transition densities display a more complex structure involving a small inner peak. The experimental densities of the various isotopes in each of the rows in Fig. 2 are dominated, according to the IBA analysis performed, by one hexadecapole configuration: the dd, sg, and dg ones, in order of excitation energy.

The matrix elements evaluated from the sdg analysis and the experimental transition charge densities in Fig. 2 have been used to evaluate the radial shapes of the structure functions $\alpha_{dg}^{(4)}(r)$, $\alpha_{eg}^{(4)}(r)$, and $\alpha_{dg}^{(4)}(r)$. This is done by equating at several radii:

$$\langle \gamma_{s}^{\dagger} \gamma_{e} \rangle_{\text{IBA}} = \rho_{s}^{\text{exp}}(r)$$

for each of the three experimental densities for every nucleus, with the r-dependent operator defined as

$$\rho_{s}^{\text{IBA}}(r) = c_{s} \left[\left(g \gamma_{d}^{\dagger} g \alpha_{dg}^{(4)}(r) + \chi_{eg}^{(4)}(g s + s g) \gamma_{e} \right) \alpha_{eg}^{(4)}(r) + \chi_{dg}^{(4)}(g \gamma_{d}^{\dagger} g + g \gamma_{d}^{\dagger} g) \alpha_{dg}^{(4)}(r) \right].$$

The solutions resulting from this procedure depend on the relative sign of the different experimental densities. This, unfortunately, cannot be determined from electron-scattering cross sections. The solution adopted displays a δ shape for the three structure functions in all isotopes; in general, the surface peak of the $\alpha_{dg}^{(4)}(r)$ function for a given isotope is pushed 0.5 fm more outward compared to that of $\alpha_{eg}^{(4)}(r)$ and of $\alpha_{dg}^{(4)}(r)$. Variations smaller than 0.5 fm in the peak positions and a factor of 2 in the heights of the surface peaks are the only differences observed for a given structure function in any of the four.

![FIG. 2. Transition charge densities (data points) of some low-lying hexadecapole excitations in the four investigated Nd isotopes. The densities are labeled by the excitation energy (in MeV) of the relevant level. The densities belonging to the same isotope are given in one column. In the rightmost column the isotope averages of the extracted IBA hexadecapole boson structure functions $\alpha_{dg}^{(4)}$, $\alpha_{eg}^{(4)}$, and $\alpha_{dg}^{(4)}$ are displayed. The transition densities calculated from these averaged structure functions are displayed as full curves.](image-url)
isotopes. A possible different solution of Eq. (4) for the
\(\alpha_{4l}^{(4)}(r) \) structure function, yielding a shape resembling a
\(\delta' \) shape, was found only in \(^{146}\text{Nd} \). However, the \(\delta' \)
outer peak is weak compared to the inner one and it has a
small radial extension. This seems to be an unacceptable
solution if one assumes that one set of structure functions
should be capable of describing the hexadecapole transition
densities in all Nd isotopes.

One set of structure functions, \(\alpha_{4l}^{(4)}(r) \), \(\alpha_{4s}^{(4)}(r) \), and
\(\alpha_{4s}^{(4)}(r) \), for all four isotopes was obtained by averaging the
structure functions obtained for each different isotope. This
could be done because of the small variations observed. These
average structure functions are displayed in the fifth column of Fig. 2. The transition charge densities for all observed states calculated with these average structure functions (full curves in the first four columns of Fig. 2) still reproduce nicely the experimental densities.

In summary, transition charge densities with small
differences in the radial shapes have been observed for
the strongest hexadecapole excited levels of the even-even
Nd isotopes with \(A = 144 - 150 \). The performed \(sdg \)-IBA
calculations with only one \(g \) boson, which satisfactorily
describe the experimental \(B(E4) \) data with smoothly
varying parameters, allow the extraction of three hexadecapole
structure functions. All of these have a \(\delta' \) shape. The
transition charge densities calculated with this set of
hexadecapole structure functions reasonably reproduce the
experimental data for all four isotopes.

This work is part of the research program of the Na-
tionale Instituut voor Kernfysica en Hoge-Energie Fysica
(NIKHEF-K) and the Stichting voor Fundamenteel On-
derzoek der Materie (FOM), which is financially support-
ed by the Nederlandse Organisatie voor Wetenschap-
pelijk Onderzoek (NWO).

[1] A. Bohr and B. R. Mottelson, Nuclear Structure (Benja-
[9] O. Scholten, The program-package PHINT, private com-
munication.
A 444, 133 (1985).