Negative pion photoproduction from ^{16}N in the region of the Δ resonance

J. Shaw,* H. Choi, T. Kobayashi, and P. Stoler

*Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180

T. Gresko, K. Keeter,† J. H. Mitchell,‡ B. Norum, and T. P. Welch§

†Physics Department, University of Virginia, Charlottesville, Virginia 22901

‡Department of Physics, Seoul National University, Seoul 151-742, Korea

§H. T. Chung and J. C. Kim

Department of Physics and Astronomy, Free University, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands

Saskatchewan Accelerator Laboratory, Saskatoon, Saskatchewan, Canada S7N 0W0

(Received 12 December 1994)

The differential cross section for the reaction $^{16}\text{N} (\gamma, \pi^-)^{16}\text{O}_{\text{gs}}$ has been measured at a photon energy of 220 MeV. We find a discrepancy between our data and a calculation based on the distorted wave impulse approximation which uses phenomenological 1p-shell wave functions. A second calculation, in which higher-shell configurations are included in the wave functions, fails to correct the discrepancy and is even more at odds with the data.

PACS number(s): 25.20.Lj, 24.10.Eq

I. PHYSICS MOTIVATION

Over the past several years, there has been a convergence between theoretical treatments of pion photoproduction from 1p-shell nuclei and the available experimental data. One important exception is the case of $^{13}\text{C}(\gamma, \pi^-)^{13}\text{Ne}_{\text{gs}}$. This is a single-nucleon mirror transition ($J^e = 1/2^-, T = 1/2$) → ($J^e = 1/2^-, T = 1/2$). Thus, two multipoles, $E0$ ($\Delta J = 0$) and $M1$ ($\Delta J = 1$), may contribute to the overall cross section. (Here, the multipoles refer to the change in the nuclear angular momentum and parity.) The $E0$ piece of the amplitude is dominated by intermediate delta production while the $M1$ piece is primarily nonresonant. The two multipoles separately dominate the overall cross section in different kinematic regions. Thus, by a proper choice of kinematics, it is possible to study the contribution of each multipole.

Data for this reaction were obtained at Bates [1], Tohoku [2], and NIKHEF [3,4]. Theoretical calculations were carried out by Tiator et al. [5] using the standard distorted wave impulse approximation (DWIA) formalism. In this treatment, the elementary pion production is treated using the photoproduction operator of Blomqvist and Laget [6], the pion final-state interactions are treated using the optical potential of Stricker, McManus, and Carr [7], and a set of phenomenological 1p-shell nuclear transition densities are used to represent the initial and final nuclear states. Such calculations initially overestimated the experimental data, in the region where the $E0$ multipole dominates, by about a factor of 4. Interestingly, the $M1$ piece of the cross section was underestimated by the calculations at energies near the peak of the resonance.

Calculations performed in the delta-hole framework were carried out by Suzuki [8] and by Takaki and Koch [9]. While these calculations improved the agreement with the experimental data, a factor of 2 discrepancy remained in the region where the $E0$ dominates. These calculations also predicted cross sections below the data in the region where the $M1$ dominates, though the discrepancy was not as pronounced as for the DWIA calculation.

In a recent series of papers [10,11], Bennhold and Tiator have shown that a small admixture of higher-shell configurations can drastically reduce the expected $E0$ contribution to the cross section, while the $M1$ part changes little. Using the $(0 + 2)\hbar\omega$ wave functions of Wolters et al. [12] for the $E0$ part of the cross section, Bennhold and Tiator obtained good agreement with the photoproduction data. These wave functions provide a microscopic description for the p-shell nuclei. They employ an empirical interaction, the parameters of which are found by performing a least-squares fit to various experimental data.
Despite the agreement with the photoproduction data, the calculation of Bennhold and Tiator is not entirely satisfactory for a number of reasons. First, the $M1$ part of the wave function was treated using a phenomenological $1p$-shell-only wave function. The reason for this is that the wave function of Wolters et al. cannot reproduce the 13C $M1$ electron scattering form factor and so cannot be expected to accurately describe the $M1$ transition in pion photoproduction. Thus, a different set of wave functions is used to describe each multipole.

Another problem is that the phenomenological $1p$-shell wave functions, on which the $M1$ piece of the amplitude is based, do not reproduce the photoproduction data at a momentum transfer of 1.25 fm$^{-1}$ (where the $M1$ is dominant) except at low photon energy. Finally, the delta dynamics would be more accurately accounted for using the delta-hole formalism rather than the SMC optical potential.

Thus, while it has been shown that the $E0$ part of the amplitude is quite sensitive to higher-shell configurations, a more unified and consistent theoretical treatment is still necessary.

With these considerations in mind, it is important to study the other single-nucleon mirror transition in the $1p$ shell, namely 18N$(\gamma,\pi^-)^{16}$O$_{\pi^-}$. Two data sets exist near threshold [13,14]. The data sets disagree by an amount greater than the combined error bars. The present work extends these measurements to an energy near the resonance peak in the nucleus.

II. EXPERIMENT

The experiment was carried out using the tagged-photon beam of the Saskatchewan Accelerator Laboratory. The experimental setup is shown in Fig. 1. Electrons from the primary beam passed through an aluminum radiator and then were bent by the tagger magnet onto a 62-channel focal plane. The photon energy resulting from a given electron is given simply by $E_{\gamma} = E_e - E_{E0}$, where E_e is the energy of the primary beam and E_{E0} is the energy of the secondary electron. The photon energy resolution was about 0.5 MeV.

The efficiency of the tagging system was measured periodically throughout the run. This was accomplished by running with a low beam current and placing a 100% efficient lead glass detector in the photon beam. The efficiency is then given by the ratio of the number of detected photons to the number of electrons on the focal plane. Typical efficiencies ranged from about 52–57%.

The target consisted of a pressed disc of urea isotopically enriched to $> 99\%$ in 15N. The disc measured two inches in diameter with a thickness of 200 mg/cm2 in 15N. Pions produced in the target were detected by a pair of scintillator range telescopes, operated in coincidence with the tagger. Each telescope consisted of a stack of sixteen plastic scintillators of size 30 x 50 cm preceded by two three-plane wire chambers. The first two planes were oriented in the horizontal and vertical directions with the third oriented at an angle of 45° relative to the first two. The wire spacing was 6 millimeters. The distance be-

![FIG. 1. A schematic of the experimental setup.](image-url)
lower. This was later confirmed by a subsequent tagger calibration. This discrepancy greatly reduced the available statistics since many of the pions produced lacked sufficient energy to be detected in our range telescopes.

III. RESULTS

The results of the two low-energy measurements are shown in Fig. 2 while the results of the present study are shown in Fig. 3. As in the 13C case, the calculations performed with the wave functions of Wolters et al. cannot reproduce the M_1 electron-scattering form factor for 15N. Thus, the M_1 contribution to the cross section is again calculated using the phenomenological 1p-shell only wave functions while the E_0 part is calculated in the $(0+2)\hbar\omega$ basis.

An examination of these data reveals no evidence for the type of E_0 suppression seen in the 13C case. At low energy, the Mainz data set seems to agree with the older calculation, based on the phenomenological 1p-shell wave functions with the interesting exception of the forward-angle point. The E_0 piece of the amplitude is important here while the M_1 part should be well constrained by Gamow-Teller beta decay. The present results overshoot even the 1p-shell only calculation.

Figure 4 shows the two calculations plotted against photon energy for a constant momentum transfer $Q^2 = 0.7$ fm$^{-2}$, where the E_0 multipole dominates. The data points at 170 MeV are from Liesenfeld et al. [13] (open circle), and Kobayashi et al. [14] (solid circle). The point at 220 MeV is from the present results. Note that this latter point is actually at a momentum transfer of 0.62 fm$^{-2}$. The curves are the same as for Fig. 2.

This work was supported by National Science Foundation Grant No. PHY-9208119.