\textbf{\gamma-ray transitions in ^{48}Cr and ^{60}Zn}

R. Kamermans, H. W. Jongma, J. van der Spek, and H. Verheul
Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands
(Received 28 January 1974)

The level structure of the $N=Z$ even nuclei ^{48}Cr and ^{60}Zn was investigated. The levels were excited in the $(^3\text{He}, n)$ reaction. By measuring direct \gamma radiation in coincidence with the outgoing neutrons information about the \gamma decay of the levels was obtained.

\textbf{INTRODUCTION}

Until recently nothing was known of the \gamma-ray transitions in the $N=Z$ even nuclei ^{48}Cr and ^{60}Zn. These nuclei are hard to investigate with light-particle–induced reactions because of the low cross sections. Information about ^{48}Cr was obtained by the $^{46}\text{Ti}($$^3\text{He}, n$)$^{48}\text{Cr}$ and ^{51}Cr(p,t)^{49}Cr reactions and, recently, the \gamma decay of levels excited by the ^{46}Ca(B,$p\gamma$)^{48}Cr reaction was investigated. The structure of ^{60}Zn was studied by neutron detection after the $^{58}\text{Ni}($$^3\text{He}, n$)$^{60}\text{Zn}$ reaction and with the $^{58}\text{Ni}($$^{16}\text{O}, ^{14}\text{C}$)$^{60}\text{Zn}$ reaction.

^{60}Zn is the heaviest $N=Z$ even nucleus of which some level structure is known. Since no \gamma rays are reported from this nucleus, we investigate these nuclei with in-beam \gamma spectroscopy.

\textbf{EXPERIMENTAL PROCEDURE AND RESULTS}

^{48}Cr and ^{60}Zn levels were excited with the $^3\text{He}, n$ reaction on enriched self-supporting 2 mg/cm2 foils of ^{46}Ti(^{46}Ti: 86.1\%; ^{47}Ti: 1.6\%; ^{48}Ti: 10.6\%; ^{49}Ti: 0.8\%; ^{50}Ti: 1.0\%), and ^{58}Ni(^{58}Ni: 99\%). Because of the large ^{48}Ti contamination experiments on natural Ti were also done. 10 MeV ^3He beams from the AVF cyclotron der Vrije Universiteit were used. Single \gamma spectra were measured with a Ge(Li) detector with an efficiency of 3.5\%. The neutrons were detected with a 10 cm diam \times 10 cm NE213 liquid scintillator. Neutron-γ separation was performed with the zero-crossover technique. For each observed neutron-γ coincidence, the energy of the γ ray, the height of the pulse from the neutron detector, and the time difference in the zero-crossover from neutron and γ pulses from the NE213 were dumped on magnetic tapes and afterwards analyzed.9 The contribution of the $(^3\text{He}, p\gamma)$ reaction is relatively small. Moreover, for the assignment of the γ rays we had to select the energy of the outgoing neutron by setting software windows in the NE213 energy spectra during the analyses, which caused a further reduction of the $(^3\text{He}, p\gamma)$ contribution.

\textbf{FIG. 1. 10-MeV ^3He on ^{46}Ti single γ spectrum. The beam was stopped in a gold backing.}
FIG. 2. γ spectrum coincident with neutrons with an energy above 3.6 MeV.

FIG. 3. Proposed level scheme of 48Cr.

FIG. 4. 10-MeV 3He on 58Ni single γ spectrum. The beam was stopped in a gold backing.

FIG. 5. γ spectrum coincident with neutrons with an energy above 3.6 MeV.
the target.

The single γ-ray spectrum from reactions with 10-MeV 3He on 46Ti is seen in Fig. 1. The γ spectrum coincident with neutrons with an energy above 3.6 MeV shows clearly the lines that belong to the 46Ti(3He, $n\gamma$)46Cr reaction (Fig. 2). Energies and intensities are given in Table I. The proposed level scheme of 46Cr, given in Fig. 3, is in excellent agreement with Ref. 5 except for the 532-keV transition. This γ ray could only be seen rather vaguely in their γ-γ coincidence spectra. The single γ-ray spectrum from reactions with 10-MeV 3He on 50Ni is shown in Fig. 4. In the spectrum of γ rays coincident with neutrons with an energy above 3.6 MeV, the γ rays that correspond to the 50Ni(3He, $n\gamma$)50Zn reaction are shown (Fig. 5). Energies and intensities are given in Table II. With the assumption of a 4$^+$ state at 2193 keV one can assign 2$^+$ for the 4200.4-keV level. The proposed level scheme is given in Fig. 6.

Lifetime measurements on the first excited state of 60Zn by means of the Doppler shift attenuation method could not be performed because the total energy shift, calculated from the kinematics with the necessary neutron detection at 0°, is only 1.7 keV.

Shell model calculations for 46Cr have been performed by assuming a closed 46Ca core with four protons and four neutrons in the 1f$_{7/2}$ shell.10,11 Different sets of matrix elements were used as indicated in Fig. 3. By assuming 50Ni as an inert core, shell model calculations for 60Zn were done with matrix elements derived from Yale-Reid12 and Hamada-Johnston13,14 potentials. Perazzo13 also used the Auerbach and Argonne interaction. In Fig. 6, two of these calculations are compared with the experimental data. The wave functions of Singh14 indicate that no simple shell model picture of 60Zn exists. This calculation is the only one that reproduces correctly the first excited 0$^+$ state. The second 2$^+$ state below 4 MeV is predicted by Perazzo.13 Unfortunately no transition probabilities are calculated for this level. Experimentally this level seems to decay preferentially to the 4$^+$ state. Upper limits for the 2$^+_2 \rightarrow 0^+_1$ and the 2$^+_2 \rightarrow 2^+$ transitions could not be extracted with a reasonable accuracy because of the low statistics of the 2006.8-keV γ ray.

![Diagram](https://example.com/diagram.png)

FIG. 6. Proposed level scheme of 60Zn.
10S. Pittel, University of Pittsburgh, private communication to Shepard, Graetzler, and Kraushaar.